98%
921
2 minutes
20
Chemical pollution (including chemicals of emerging concern - CECs) continues to gain increasing attention as a global threat to human health and the environment, with numerous reports on the adverse and sometimes devastating effects upon ecosystems the presence of these chemicals can have. Whilst many studies have investigated presence of CECs in aquatic environments, these studies have been often focused on higher income countries, leaving significant knowledge gaps for many low-middle income countries. This study proposes a new integrated powerless, in-situ multi-mode extraction (iMME) sampler for the analysis of chemicals (105 CECs) and biological (5 genes) markers in water in contrasting settings: an urbanized Avon River in the UK and remote Olifants River in Kruger National Park in South Africa. The overarching goal was to develop a sampling device that maintains integrity of a diverse range of analytes via analyte immobilization using polymeric and glass fibre materials, without access to power supply or cold chain (continuous chilled storage) for sample transportation. Chemical analysis was achieved using ultra-performance liquid chromatography coupled with tandem mass spectrometry. Several mobile CECs showed low stability in river water, at room temperature and typical 24 h sampling/transport time. It is therefore recommended that, in the absence of cooling, environmental water samples are spiked with internal standards on site, immediately after collection and analyte immobilization option is considered, in order to allow fully quantitative analysis. iMME has proven effective in immobilization, concentration and increased stability of CECs at room temperature (and at least 7 days storage) allowing for sample collection at remote locations. The results from the River Avon and Olifants River sampling indicate that the pristine environment of Olifants catchment is largely unaffected by CECs common in the urbanized River Avon in the UK with a few exceptions: lifestyle chemicals (e.g., caffeine, nicotine and their metabolites), paracetamol and UV filters due to tourism and carbamazepine due to its persistent nature. iMME equipped with an additional gene extraction capability provides an exciting new opportunity of comprehensive biochemical profiling of aqueous samples with one powerless in-situ device. Further work is required to provide full integration of the device and comprehensive assessment of performance in both chemical and biological targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.160034 | DOI Listing |
J Colloid Interface Sci
September 2025
Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China. Electronic address:
Ionic conductive hydrogels show promise for flexible sensors in wearables and e-skins, but balancing mechanical strength with high conductivity remains challenging. Herein, a triple-network ionic conductive hydrogel based on poly(acrylic acid) (PAA) was developed, synergistically reinforced by dissolved cellulose (dCel) and aramid nanofibers (ANF), with Al/Zn bimetallic ions serving as the conductive medium. Intriguingly, dCel was in-situ generated using the concentrated Al/Zn bimetallic salt solutions as the cellulose solvent, following the complete dissolution of the pulp fibers driven by the intensive ionic hydration of Al/Zn ions.
View Article and Find Full Text PDFBioact Mater
November 2025
MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, PR China.
Methacrylated gelatin (GelMA) hydrogels have been well-recognized as a widely-used natural polymer for biofabrications due to the adaptability for multiple crosslinking schemes, desirable biocompatibility and biodegradability, and ease of chemical functionalization. With regard to 3D bioprinting, however, GelMA has shown unsatisfactory printing stability and accuracy due to slow sol-gel transition, suboptimal mechanical strength, and strict temperature control for printing. We herein developed an innovative dual-crosslinkable colloidal inks composed of self-assembled GelMA nanospheres with 80 % self-healing efficiency, which outperform the traditional GelMA polymeric inks in terms of enhanced printability and fidelity, broader printing temperature range, adjustable mechanical strength ranging from brain analogue 2.
View Article and Find Full Text PDFWaste Manag
August 2025
Faculty of Metallurgical and Energy Engineering, State Key Laboratory of Complex Non-Ferrous Metal; Resource Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China. Electronic address:
The microwave-assisted leaching technique has emerged as an efficient green technology for recovering valuable metals from secondary resources. However, conventional multi-mode reactors face limitations, including low energy density and poor stability, which restrict their application in emerging green systems such as deep eutectic solvents (DES). In this study, a novel single-mode bottom-focused microwave reaction system featuring a specially designed reactor and an in-situ temperature sensor system was developed to enhance yttrium (Y) recovery.
View Article and Find Full Text PDFAnal Chim Acta
September 2025
School of Science, Xihua University, Chengdu, 610039, China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, China. Electronic address:
Background: β-Galactosidase (β-Gal) is widely acknowledged as a crucial biomarker for primary ovarian cancer. Therefore, precise analysis of β-Gal plays a significant role in the early diagnosis of primary ovarian cancer. In contrast to organic molecule probes, silicon nanoparticles (Si NPs) have garnered significant attention owing to their outstanding photoluminescence stability and good biocompatibility.
View Article and Find Full Text PDFJ Hazard Mater
October 2024
National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong Univers
Direct sustainable conversion of hydrogen sulfide (HS) enables collaborative recovery of H and S resources via a metal-enhanced microwave plasma strategy, avoiding the hydrogen waste in the traditional Claus process. However, the metal size effect on microwave plasma property, the optimal process parameters, and the enhancement mechanism remain unclear in HS conversion. Herein, the optimal tungsten needle (diameter: 1 mm, length: 60 mm, and tip angle: 10°) is experimentally proven for intensifying microwave discharge in multi-mode cavities.
View Article and Find Full Text PDF