Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metallic interface engineering is a promising strategy to stabilize Zn anode via promoting Zn uniform deposition. However, strong interactions between the coating and Zn and sluggish transport of Zn lead to high anodic polarization. Here, we present a bio-inspired silk fibroin (SF) coating with amphoteric charges to construct an interface reversible electric field, which manipulates the transfer kinetics of Zn and reduces anodic polarization. The alternating positively and negatively charged surface as a build-in driving force can expedite and homogenize Zn flux via the interplay between the charged coating and adsorbed ions, endowing the Zn-SF anode with low polarization voltage and stable plating/stripping. Experimental analyses with theoretical calculations suggest that SF can facilitate the desolvation of [Zn(HO)] and provide nucleation sites for uniform deposition. Consequently, the Zn-SF anode delivers a high-rate performance with low voltage polarization (83 mV at 20 mA cm) and excellent stability (1500 h at 1 mA cm; 500 h at 10 mA cm), realizing exceptional cumulative capacity of 2.5 Ah cm. The full cell coupled with ZnVO·nHO (ZnVO) cathode achieves specific energy of ~ 270.5/150.6 Wh kg (at 0.5/10 A g) with ~ 99.8% Coulombic efficiency and retains ~ 80.3% (at 5.0 A g) after 3000 cycles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649586PMC
http://dx.doi.org/10.1007/s40820-022-00969-4DOI Listing

Publication Analysis

Top Keywords

interface reversible
8
reversible electric
8
electric field
8
uniform deposition
8
anodic polarization
8
zn-sf anode
8
field regulated
4
regulated amphoteric
4
amphoteric charged
4
charged protein-based
4

Similar Publications

Flexibility-Induced Robustness in Molecular Catalysts for Electrocatalytic CO Reduction.

J Am Chem Soc

September 2025

Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

CO electroreduction to produce fuels and chemicals is of great significance. Molecular catalysts offer valuable advantages in light of their well-defined active sites and tunable structural and electronic properties. However, their stability is often compromised by rigid conjugated structures.

View Article and Find Full Text PDF

Circularly polarized luminescence (CPL) has emerged as a critical technology for anticounterfeiting and optical display applications due to its unique chiroptical properties. We report a multicolor CPL-emitting elastomeric film (P37/PSK@SiO-PDMS) that synergistically combines chiral helical polyacetylene (P37) and a surface-engineered perovskite (PSK@SiO) through hydrogen-bond-directed assembly. Confinement within the PDMS matrix drives P37 to self-assemble into a chiral supramolecular structure through hydrogen bonding, inducing a chiroptical inversion.

View Article and Find Full Text PDF

N460S in PB2 and I163T in nucleoprotein synergistically enhance the viral replication and pathogenicity of influenza B virus.

PLoS Pathog

September 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.

Influenza B viruses (IBVs), though often overshadowed by influenza A viruses (IAVs), remain a significant global public health concern, particularly during seasons when they predominate. However, the molecular mechanisms underlying IBV pathogenicity remain largely unknown. In this study, we identified two amino acid substitutions, PB2-N460S and NP-I163T, from IBV clinical isolates with distinct replication and pathogenicity profiles.

View Article and Find Full Text PDF

Ultrathin Amorphous Iron Oxide Nanosheets for Improving the Electrochemical Performance of Li-S Batteries.

Langmuir

September 2025

Key Laboratory of Functional Molecular Solids (Ministry of Education), College of Chemistry and Materials Science, Anhui Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Normal University, Wuhu 241000, China.

The sluggish kinetics and diffusion of lithium polysulfide (LiPS) intermediates lead to the decline in the capacity and rate of high-energy lithium-sulfur (Li-S) batteries. Integrating adsorbents and electrocatalysts into the Li-S system is an effective strategy for suppressing the polysulfide shuttle and enhancing the redox kinetics of sulfur species. The disordered structure of the electrocatalysts exhibits significantly enhanced catalytic activity.

View Article and Find Full Text PDF

Calcium/Manganese Nanoreactors Enable Triple-Enhanced Chemodynamic/Photodynamic Therapy via Tumor Microenvironment Reprogramming.

ACS Appl Mater Interfaces

September 2025

MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, No.55 West Zhongshan Avenue, Tianhe District, Guangzhou 510631, Guangdong, China.

While reactive oxygen species (ROS)-dependent chemodynamic therapy (CDT) and photodynamic therapy (PDT) hold promise for cancer treatment, their efficacy remains constrained by tumor microenvironment (TME) barriers: glutathione (GSH) overexpression, insufficient HO supply, and hypoxia. To address these limitations, we engineered a Trojan horse-inspired MnO-shelled CaO nanoreactor (CaO/MnO-Ce6-PEG) by employing a sequential TME reprogramming strategy, triggering a cascading ROS storm for enhanced CDT and PDT. The outer MnO layer first depletes GSH through redox conversion, exposing the CaO core hydrolysis, and subsequently providing HO for CDT and O for ameliorating hypoxia to boost Ce6-mediated PDT.

View Article and Find Full Text PDF