98%
921
2 minutes
20
Recapitulating inherent heterogeneity and complex microarchitectures within confined print volumes for developing implantable constructs that could maintain their structure has remained challenging. Here, we present a combinational multimaterial and embedded bioprinting approach to fabricate complex tissue constructs that can be implanted postprinting and retain their three-dimensional (3D) shape . The microfluidics-based single nozzle printhead with computer-controlled pneumatic pressure valves enables laminar flow-based voxelation of up to seven individual bioinks with rapid switching between various bioinks that can solve alignment issues generated during switching multiple nozzles. To improve the spatial organization of various bioinks, printing fidelity with the -direction, and printing speed, self-healing and biodegradable colloidal gels as support baths are introduced to build complex geometries. Furthermore, the colloidal gels provide suitable microenvironments like native extracellular matrices (ECMs) for achieving cell growths and fast host cell invasion via interconnected microporous networks and . Multicompartment microfibers (, solid, core-shell, or donut shape), composed of two different bioink fractions with various lengths or their intravolume space filled by two, four, and six bioink fractions, are successfully printed in the ECM-like support bath. We also print various acellular complex geometries such as pyramids, spirals, and perfusable branched/linear vessels. Successful fabrication of vascularized liver and skeletal muscle tissue constructs show albumin secretion and bundled muscle mimic fibers, respectively. The interconnected microporous networks of colloidal gels result in maintaining printed complex geometries while enabling rapid cell infiltration, .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10822051 | PMC |
http://dx.doi.org/10.1021/acsami.2c12585 | DOI Listing |
Front Immunol
September 2025
Department of Thoracic Surgery, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China.
Background: Lung cancer remains the leading cause of cancer-related mortality globally, primarily due to late-stage diagnosis, molecular heterogeneity, and therapy resistance. Key biomarkers such as EGFR, ALK, KRAS, and PD-1 have revolutionized precision oncology; however, comprehensive structural and clinical validation of these targets is crucial to enhance therapeutic efficacy.
Methods: Protein sequences for EGFR, ALK, KRAS, and PD-1 were retrieved from UniProt and modeled using SWISS-MODEL to generate high-confidence 3D structures.
J Hepatocell Carcinoma
September 2025
Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
Objective: Anoikis is an anchorage-dependent programmed cell death implicated in multiple pathological processes of cancers; however, the prognostic value of anoikis-related genes (ANRGs) in hepatocellular carcinoma (HCC) remains unclear. Our study aims to develop an ANRGs-based prediction model to improve prognostic assessment in HCC patients.
Methods: The RNA-seq profile was performed to estimate the expression of ANRGs in HCC patients.
Front Cell Infect Microbiol
September 2025
Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China.
The gut microbiota of piglets is crucial for intestinal health and immune function, yet highly susceptible to various factors. Multiple factors such as Genetic and Sow Factors, feeding environment, diet and pathogen combine to shape the gut microbiota of piglets. PEDV, a highly pathogenic and transmissible virus, disrupts the gut microbiota by damaging the intestinal epithelial barrier, leading to microbial imbalance, weakened gut immunity, and severe diarrhea.
View Article and Find Full Text PDFBiomater Sci
September 2025
Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, P.R. China. iamzgteng@
Breast cancer is the most prevalent malignancy worldwide, yet conventional therapies are invasive and prone to resistance, recurrence, and metastasis. Photodynamic therapy (PDT) is a promising noninvasive modality, but its efficacy is limited by tumor hypoxia and poor photosensitizer delivery. Here, we report a photoacoustic-imaging nanomotor, PPIC, which addresses these challenges through integrated functions of oxygen production, deep tissue penetration and photoacoustic imaging.
View Article and Find Full Text PDFImmunopharmacol Immunotoxicol
September 2025
Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
Objective: Atopic dermatitis (AD) is a common chronic inflammatory skin problem. Herein, we aimed to demonstrate the efficacy of matrine (MT) on AD and to reveal its mechanism.
Material And Methods: An AD model was induced topical administration of 1-fluoro-2,4-dinitorobenzene (DNFB).