Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Membranes integrating two-dimensional (2D) materials have emerged as a category with unusual ion transport and potentially useful separation applications in both aqueous and nonaqueous systems. The interlayer galleries in these membranes drive separation and selectivity, with specific transport properties determined by the chemical and structural modifications within the inherently different interlayers. Here we report an approach to tuning interlayer spacing with a single source material─exfoliated and restacked vermiculite with alkanediamine cross-linkers─to both control the gallery height and enhance the membrane stability. The as-prepared cross-linked 2D vermiculite membranes exhibit ion diffusivities tuned by the length of the selected diamine molecule. The 2D nanochannels in these stabilized vermiculite membranes enable a systematic study of confined ionic transport.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c05954DOI Listing

Publication Analysis

Top Keywords

vermiculite membranes
12
ion transport
8
membranes
5
tunable ion
4
transport
4
transport freestanding
4
vermiculite
4
freestanding vermiculite
4
membranes membranes
4
membranes integrating
4

Similar Publications

Selective acid recovery and metal separation from acid mine drainage using a highly stable vermiculite membrane.

Water Res

August 2025

State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, PR China. Electronic address:

Selective ion separation from acid mine drainage (AMD) under extreme acidic conditions presents a critical environmental challenge. While membrane-based technologies show promise for advancing water treatment processes, implementation in AMD treatment requires membranes that combine exceptional acid stability with precise ion sieving capabilities. Inspired by the ion retention characteristics of natural clay minerals, we have developed cation-selective membranes using vermiculite nanosheets as building blocks.

View Article and Find Full Text PDF

Irreversible electroporation (IRE) is a minimally invasive, non-thermal tumor ablation technique that induces nanoscale membrane perforation, leading to immunogenic cell death (ICD). However, IRE alone is limited by uneven electric field attenuation, incomplete tumor ablation, and the immunosuppressive nature of the tumor microenvironment. To address these challenges, a multifunctional nanomaterial, vermiculite nanosheets/calcium peroxide nanosheets (VMT/CaO NSs), is developed to enhance the efficacy of IRE.

View Article and Find Full Text PDF

Effective membrane separation of Li from Na and Mg is crucial for lithium extraction from water yet challenging for conventional polymeric membranes. Two dimensional (2D) membranes with ordered laminar structures and tunable physicochemical properties offer distinctive ion-sieving capabilities promising for lithium extraction. Recently, phyllosilicates are introduced as abundant and cost-effective source materials for such membranes.

View Article and Find Full Text PDF

Large-Area Clay Composite Membranes with Enhanced Permeability for Efficient Dye/Salt Separation.

Membranes (Basel)

January 2025

Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China.

The escalating discharge of textile wastewater with plenty of dye and salt has resulted in serious environmental risks. Membranes assembled from two-dimensional (2D) nanomaterials with many tunable interlayer spacings are promising materials for dye/salt separation. However, the narrow layer spacing and tortuous interlayer transport channels of 2D-material-based membranes limit the processing capacity and the permeability of small salt ions for efficient dye/salt separation.

View Article and Find Full Text PDF

Enhancing CO Oversaturation in the Confined Water Enables Superior Gas Selectivity of 2D Membranes.

J Phys Chem Lett

January 2025

Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.

Due to the global demands on carbon neutralization, CO separation membranes, particularly those based on two-dimensional (2D) materials, have attracted increasing attention. However, recent works have focused on the chemical decoration of membranes to realize the selective transport, leading to the compromised stability in the presence of moisture. Herein, we develop a series of 2D capillaries based on layered double hydroxide (LDH), graphene oxide, and vermiculite to enhance the oversaturation of CO in the confined water for promoting the membrane permselectivity.

View Article and Find Full Text PDF