Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Effective membrane separation of Li from Na and Mg is crucial for lithium extraction from water yet challenging for conventional polymeric membranes. Two dimensional (2D) membranes with ordered laminar structures and tunable physicochemical properties offer distinctive ion-sieving capabilities promising for lithium extraction. Recently, phyllosilicates are introduced as abundant and cost-effective source materials for such membranes. However, their water instability and low inherent ion transport selectivity hinder practical applications. Herein, a new class of laminar membranes with excellent stability and tunable ion sieving is reported by incorporating inorganic alumina pillars into vermiculite interlayers. Crosslinking vermiculite flakes with alumina pillars significantly strengthens interlamellar interactions, resulting in robust water stability. Doping of Na before the pillaring process reverses the membrane's surface charge, substantially boosting Li separation from multivalent cations via electrostatic interactions. Lithium extraction is often complicated by the presence of co-existing monovalent cations (e.g., Na) at higher concentrations. Here, by introducing excess Na into the membrane after the pillaring process, the separation of Li from monovalent cations is enhanced through steric effects. This work realizes both monovalent/multivalent and monovalent/monovalent selective ion sieving with the same membrane platform. A separation mechanism is proposed based on Donnan exclusion and size exclusion, providing new insights for membrane design for resource recovery applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11983263PMC
http://dx.doi.org/10.1002/adma.202417994DOI Listing

Publication Analysis

Top Keywords

lithium extraction
12
ion sieving
8
alumina pillars
8
pillaring process
8
monovalent cations
8
pillared laminar
4
laminar vermiculite
4
membranes
4
vermiculite membranes
4
membranes tunable
4

Similar Publications

Data-Driven Exploration of Critical Factors for Single-Phase High-Entropy Oxide Anode Materials.

J Phys Chem Lett

September 2025

Institute of multidisciplinary research for advanced materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.

High-entropy oxides (HEOs) are attracting significant attention owing to their compositional tunability and structural robustness. However, the identification of specific compositional combinations that yield a single-phase structure in HEOs remains unclear owing to the immense combinatorial complexity inherent in multielement systems. This study adopts a materials informatics approach that integrates experimental synthesis data with machine learning to identify key compositional factors enabling single-phase HEO formation via solid-state synthesis.

View Article and Find Full Text PDF

Understanding the electrochemical extraction and deposition of lithium (Li) from cathode is crucial for advancing anode-free solid-state batteries (AFSSBs). Herein, cryo-transmission electron microscopy (cryo-TEM) and electrochemical studies are employed to investigate how current collector surface properties, current densities, and cathode loadings influence the morphology of fresh electrochemically deposited Li and the electrochemical performance in sulfide-based AFSSBs. Cryo-TEM reveals that Cu current collectors induce irregular, dendritic Li deposits due to their lithiophobic nature and reactivity with LiPSCl (LPSC), while Ni and Au facilitate more uniform, planar-like Li growth.

View Article and Find Full Text PDF

High-nickel layered oxide LiNiCoMnO (NCM, ≥ 0.8) materials are considered optimal cathodes for lithium-ion power batteries owing to their high energy density, commendable cycling performance, and cost-effectiveness. However, structural collapse and interface instability during cycling result in diminished cycling stability, significantly hindering their commercial viability.

View Article and Find Full Text PDF

Owing to the crucial role in energy transformation for decarbonization, sustainable lithium (Li) supply has become growingly critical. Low-quality brines hold vast potential due to infinite reserves and diverse distribution but desire green and cost-effective extraction techniques against low Li concentrations and high magnesium-to-lithium ratios. Solar-driven direct lithium extraction (SDLE) systems combining conventional evaporation and DLE techniques can overcome the present challenges of Li extraction, promising to advance the exploitation of low-quality brines while simultaneously producing fresh water.

View Article and Find Full Text PDF

Evaporation-Driven Fabric for Synergistic Water-Electricity-Lithium Co-Production.

Adv Mater

September 2025

State Key Laboratory for Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China.

Water evaporation constitutes a ubiquitous physical phenomenon. This natural process enables efficient energy and resource harvesting through water interacting with materials with tailored structural, chemical, and thermal properties. Here, this work designs an evaporation-driven fabric (e-fabric) that enables the utilization of water-electricity-lithium from brine through three optimized functional layers.

View Article and Find Full Text PDF