98%
921
2 minutes
20
Accurate lymphoma segmentation in PET/CT images is important for evaluating Diffuse Large B-Cell Lymphoma (DLBCL) prognosis. As systemic multiple lymphomas, DLBCL lesions vary in number and size for different patients, which makes DLBCL labeling labor-intensive and time-consuming. To reduce the reliance on accurately labeled datasets, a weakly supervised deep learning method based on multi-scale feature similarity is proposed for automatic lymphoma segmentation. Weak labeling was performed by randomly dawning a small and salient lymphoma volume for the patient without accurate labels. A 3D V-Net is used as the backbone of the segmentation network and image features extracted in different convolutional layers are fused with the Atrous Spatial Pyramid Pooling (ASPP) module to generate multi-scale feature representations of input images. By imposing multi-scale feature consistency constraints on the predicted tumor regions as well as the labeled tumor regions, weakly labeled data can also be effectively used for network training. The cosine similarity, which has strong generalization, is exploited here to measure feature distances. The proposed method is evaluated with a PET/CT dataset of 147 lymphoma patients. Experimental results show that when using data, half of which have accurate labels and the other half have weak labels, the proposed method performed similarly to a fully supervised segmentation network and achieved an average Dice Similarity Coefficient (DSC) of 71.47%. The proposed method is able to reduce the requirement for expert annotations in deep learning-based lymphoma segmentation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2022.106230 | DOI Listing |
PLoS One
September 2025
Department of Smart Manufacturing, Industrial Perception and Intelligent Manufacturing Equipment Engineering Research Center of Jiangsu Province, Nanjing Vocational University of Industry Technology, Nanjing, Jiangsu, China.
In the field of quality control, metal surface defect detection is an important yet challenging task. Although YOLO models perform well in most object detection scenarios, metal surface images under operational conditions often exhibit coexisting high-frequency noise components and spectral aliasing background textures, and defect targets typically exhibit characteristics such as small scale, weak contrast, and multi-class coexistence, posing challenges for automatic defect detection systems. To address this, we introduce concepts including wavelet decomposition, cross-attention, and U-shaped dilated convolution into the YOLO framework, proposing the YOLOv11-WBD model to enhance feature representation capability and semantic mining effectiveness.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
September 2025
Camouflaged Object Segmentation (COS) faces significant challenges due to the scarcity of annotated data, where meticulous pixel-level annotation is both labor-intensive and costly, primarily due to the intricate object-background boundaries. Addressing the core question, "Can COS be effectively achieved in a zero-shot manner without manual annotations for any camouflaged object?", we propose an affirmative solution. We analyze the learned attention patterns for camouflaged objects and introduce a robust zero-shot COS framework.
View Article and Find Full Text PDFFront Plant Sci
August 2025
College of Mathematics and Computer Science, Yan'an University, Yan'an, Shaanxi, China.
To address the challenge of real-time kiwifruit detection in trellised orchards, this paper proposes YOLOv10-Kiwi, a lightweight detection model optimized for resource-constrained devices. First, a more compact network is developed by adjusting the scaling factors of the YOLOv10n architecture. Second, to further reduce model complexity, a novel C2fDualHet module is proposed by integrating two consecutive Heterogeneous Kernel Convolution (HetConv) layers as a replacement for the traditional Bottleneck structure.
View Article and Find Full Text PDFComput Methods Programs Biomed
August 2025
Zhengzhou University, School of Computer and Artificial Intelligence, Zhengzhou, 450001, China. Electronic address:
Background And Objective: The early detection of breast cancer plays a critical role in improving survival rates and facilitating precise medical interventions. Therefore, the automated identification of breast abnormalities becomes paramount, significantly enhancing the prospects of successful treatment outcomes. To address this imperative, our research leverages multiple modalities such as MRI, CT, and mammography to detect and screen for breast cancer.
View Article and Find Full Text PDFIEEE Trans Med Imaging
September 2025
Computed Tomography (CT) to Cone-Beam Computed Tomography (CBCT) image registration is crucial for image-guided radiotherapy and surgical procedures. However, achieving accurate CT-CBCT registration remains challenging due to various factors such as inconsistent intensities, low contrast resolution and imaging artifacts. In this study, we propose a Context-Aware Semantics-driven Hierarchical Network (referred to as CASHNet), which hierarchically integrates context-aware semantics-encoded features into a coarse-to-fine registration scheme, to explicitly enhance semantic structural perception during progressive alignment.
View Article and Find Full Text PDF