From MXene Trash to Ultraflexible Composites for Multifunctional Electromagnetic Interference Shielding.

ACS Appl Mater Interfaces

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan250061, P.R. China.

Published: November 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The development of flexible composites based on the transition metal carbides/nitrides (MXenes) is gaining popularity because of MXenes' high application potentials for electromagnetic interference (EMI) shields. Here, we prepare a new type of ultraflexible composite films composed of "trashed" MXene sediment (MS) and waterborne polyurethane using a simple, facile solution casting approach. In addition to the outstanding mechanical strength and electrical conductivity, an extremely wide-range of MS contents can be achieved for the composites, resulting in EMI shielding effectiveness (SE) that may be controlled over a wide range. The X-band EMI SE of the flexible, low-density composites containing 70 wt % MS reaches 45.3 dB at a thickness of merely 0.51 mm. Moreover, the SE values of more than 34.5 dB in the ultrabroadband gigahertz frequency range including X-band, P-band, K-band, and R-band, are accomplished for the thin composites. Furthermore, the MS/WPU composite films show excellent electrothermal and photothermal performance, demonstrating the multifunctionalities of the MS-based EMI shields. Combined with the cost-efficient, sustainable, and scalable preparation approach, the ultraflexible, multifunctional composites from "trashed MXene" show great potentials for next-generation electronics. This work also opens a new avenue for the creation of innovative, high-performance, multifunctional flexible composites.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c13849DOI Listing

Publication Analysis

Top Keywords

electromagnetic interference
8
flexible composites
8
emi shields
8
composite films
8
composites
7
mxene trash
4
trash ultraflexible
4
ultraflexible composites
4
composites multifunctional
4
multifunctional electromagnetic
4

Similar Publications

Electromagnetic pollution poses significant risks to electronic devices and human health, highlighting the need for mechanically robust, lightweight, and cost-effective electromagnetic interference (EMI) shielding materials. 3D-printed structures with nanomaterial-engineered surfaces offer a promising method for tailoring mechanical and electrical properties through multiscale design. Herein, we present a facile strategy for fabricating lightweight and flexible EMI shielding structures by chemical deposition of nanostructured metal coatings onto 3D-printed polymeric substrates.

View Article and Find Full Text PDF

High-strength Janus cellulose/MXene composite paper from deep eutectic solvent-carboxymethylated eucalyptus fibers for electromagnetic shielding.

Int J Biol Macromol

September 2025

Plant Fiber Material Science Research Center, State Key Laboratory of Advanced Papermaking and Paper-based Materials, South China University of Technology, Guangzhou, 510640, China.

The development of cellulose-based electromagnetic shielding materials is critical for the advancement of sustainable, lightweight, and flexible electronic devices. Most high-performance composites rely on nanocellulose, which is expensive and energy-intensive to produce. In this work, we employ chemically modified conventional eucalyptus pulp fibers (non-nano) to fabricate Janus-structured cellulose/MXene composite papers.

View Article and Find Full Text PDF

With the rapid advancement in autonomous vehicles, 5G and future 6G communications, medical imaging, spacecraft, and stealth fighter jets, the frequency range of electromagnetic waves continues to expand, making electromagnetic interference (EMI) shielding a critical challenge for ensuring the safe operation of equipment. Although some existing EMI shielding materials offer lightweight construction, high strength, and effective shielding, they struggle to efficiently absorb broadband electromagnetic waves and mitigate dimensional instability and thermal stress caused by temperature fluctuations. These limitations significantly reduce their service life and restrict their practical applications.

View Article and Find Full Text PDF

Optimizing the collection chamber structure is critical for improving the reliability of electrostatic radon detectors, which are key to environmental and health risk monitoring. This study used COMSOL simulations to explore polonium-218 (Po, a radon progeny) ion collection parameters: chamber geometry, voltage, base material and structure, detector configuration, and edge electrification. Results showed that an uncharged base, combined with a detector protruding 2 mm above the base, enhances collection efficiency (CE); charged metal edge shielding boosts CE by 4-10 % without increasing collection time (CT); ∼2000 V balances peak CE and electromagnetic interference suppression.

View Article and Find Full Text PDF

High wet-strength MXene/lignin-containing cellulose nanofibrils composite films with Janus structure for electromagnetic shielding and Joule heating.

Int J Biol Macromol

September 2025

State Key Laboratory of Advanced Paper making and Paper-based Materials, South China University of Technology, Guangzhou, Guangdong Province, 510640, PR China.

Developing MXene-based electromagnetic interference (EMI) shielding composite films with exceptional wet mechanical properties is crucial to address the limitation of conventional MXene-based EMI shielding composite films in humid environments. Herein, we present a fabrication strategy for Janus-structured MXene-based EMI shielding composite films with exceptional wet mechanical and Joule heating performances. Through depositing tannic acid-modified MXene (TM) on maleic anhydride-modified lignin-containing cellulose nanofibril (MLCNF) film using a scalable vacuum filtration and hot-pressing strategy.

View Article and Find Full Text PDF