Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mid-infrared (MIR) single-photon detection is emerging as an important technology for various applications. Superconducting nanowire single photon detectors (SNSPDs) fabricated with superconducting films with energy gaps of a few meV are natural broadband single-photon detectors. Recently, extending SNSPDs' operation wavelengths into the MIR region is highly attractive. γ-NbN has a reduced N content and lower energy gap than the commonly used δ-NbN, making SNSPDs based on γ-NbN film more sensitive to low energy photons. We report on a NbN-SNSPD based on 62-nm wide nanowire, with an optical absorption enhancement design and an optimized device package for efficient ZBLAN fiber coupling and dark count filtering. The developed device has a unity intrinsic detection efficiency (IDE) in the 1.5-4 µm wavelength region, and the device detection efficiency at 2.95 µm was measured to be 32.5%, with an uncertainty of 12.7%. Furthermore, we reduced the device geometry, and measured 3-10 µm photon response of a device based on 5-nm film and 42-nm nanowire, with an IDE of 95%, 81%, 40%, and 6% for 4.8, 6, 8, and 10 µm, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.472378DOI Listing

Publication Analysis

Top Keywords

superconducting nanowire
8
nanowire single
8
single photon
8
photon detectors
8
detection efficiency
8
µm
5
device
5
mid-infrared nbn-based
4
nbn-based superconducting
4
nanowire
4

Similar Publications

We present the first results from the Quantum Resolution-Optimized Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE). The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption, and is sensitive to energy deposits as low as 0.11 eV.

View Article and Find Full Text PDF

In this review paper, we begin by introducing the fundamental concepts of superconductivity, laying the groundwork for understanding its principles and applications. We then delve into the scientific advantages of one-dimensional (1D) superconductors over three-dimensional (3D) superconductors, highlighting the main significant enhancement in the upper critical field, which can increase by two orders of magnitude. This feature is crucial for advancing the technological performance of superconducting high-field magnets.

View Article and Find Full Text PDF

Quantum optics has led to important advancements in our ability to prepare and detect correlations between individual photons. Its principles are increasingly translated into nanoscale characterization tools, furthering methods in spectroscopy, microscopy and metrology. In this Review, we discuss the rapid progress in this field driven by advanced technologies of single-photon detectors and quantum-light sources, including time-resolved single-photon counting cameras, superconducting nanowire single-photon detectors and entangled photon sources of increasing brightness.

View Article and Find Full Text PDF

Hybrid superconductor-semiconductor platforms are foundational to advancing quantum information technologies, motivating the integration of materials with clean interfaces, robust superconductivity, and scalable architectures. Here, we report the synthesis and analysis of inclined InAs nanowires, conformally coated with β-Sn shells. These nanowires extend in opposite in-plane directions, forming a self-aligned, criss-cross network.

View Article and Find Full Text PDF