LCTree-Based Approach for Mining Frequent Items in Real-Time.

Comput Intell Neurosci

J. B Speed School of Engineering, University of Louisville, Louisville, KY, USA.

Published: October 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the increase of real-time stream data, knowledge discovery from stream data becomes more and more important, which requires an efficient data structure to store transactions and scan sliding windows once to discover frequent itemsets. We present a new method named Linking Compact Tree (LCTree). We designed an algorithm by using an improved data structure to create objective tree, which can find frequent itemsets with linear complexity. Secondly, we can merge items in sliding windows by one scan with Head Linking List data structure. Third, by implementing data structure of Tail Linking List, we can locate the obsolete nodes and remove them easily. Finally, LCTree is able to find all exact frequent items in data stream with reduced time and space complexity by using such a linear data structure. Experiments on datasets with different sizes and types were conducted to compare the proposed LCTree technique with well-known frequent item mining methods including Cantree, FP-tree, DSTree, CPSTree, and Gtree. The results of experiments show presented algorithm has better performance than other methods, and also confirm that it is a promising solution for detecting frequent item sets in real time applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586759PMC
http://dx.doi.org/10.1155/2022/7430106DOI Listing

Publication Analysis

Top Keywords

data structure
20
frequent items
8
data
8
stream data
8
sliding windows
8
frequent itemsets
8
linking list
8
frequent item
8
frequent
6
structure
5

Similar Publications

Integrating opinion dynamics and differential game modeling for sustainable groundwater management.

Water Res

September 2025

College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China. Electronic address:

Groundwater overextraction presents persistent challenges due to strategic interdependence among decentralized users. While game-theoretic models have advanced the analysis of individual incentives and collective outcomes, most frameworks assume fully rational agents and neglect the role of cognitive and social factors. This study proposes a coupled model that integrates opinion dynamics with a differential game of groundwater extraction, capturing the interaction between institutional authority and evolving stakeholder preferences.

View Article and Find Full Text PDF

Background: The ability to access and evaluate online health information is essential for young adults to manage their physical and mental well-being. With the growing integration of the internet, mobile technology, and social media, young adults (aged 18-30 years) are increasingly turning to digital platforms for health-related content. Despite this trend, there remains a lack of systematic insights into their specific behaviors, preferences, and needs when seeking health information online.

View Article and Find Full Text PDF

Background: Out-of-hospital cardiac arrests (OHCAs) are a leading cause of death worldwide, yet first responder apps can significantly improve outcomes by mobilizing citizens to perform cardiopulmonary resuscitation before professional help arrives. Despite their importance, limited research has examined the psychological and behavioral factors that influence individuals' willingness to adopt these apps.

Objective: Given that first responder app use involves elements of both technology adoption and preventive health behavior, it is essential to examine this behavior from multiple theoretical perspectives.

View Article and Find Full Text PDF

Solvation Structure of Np in a Noncomplexing Environment.

Inorg Chem

September 2025

Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

The solvation structure of an Np ion in an aqueous, noncomplexing and nonoxidizing environment of trifluoromethanesulfonic (triflic) acid was investigated with X-ray absorption spectroscopy (XAS) combined with ab initio molecular dynamics (AIMD) and time-dependent density functional theory (TDDFT) calculations. Np L-edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data were collected for Np in 1, 3, and 7 M triflic acid using a laboratory-scale spectrometer and separately at a synchrotron facility, producing data sets in excellent agreement. TDDFT calculations revealed a weak pre-edge feature not previously reported for Np L-edge XANES.

View Article and Find Full Text PDF

Among the different types of HIV-1 maturation inhibitors, those that stabilize the junction between the capsid protein C-terminal domain (CA) and the spacer peptide 1 (SP1) within the immature Gag lattice are promising candidates for antiretroviral therapies. Here, we report the atomic-resolution structure of CA-SP1 assemblies with the small-molecule maturation inhibitor PF-46396 and the assembly cofactor inositol hexakisphosphate (IP6), determined by magic angle spinning (MAS) NMR spectroscopy. Our results reveal that although the two PF-46396 enantiomers exhibit distinct binding modes, they both possess similar anti-HIV potency.

View Article and Find Full Text PDF