"Omics" insights into plastid behavior toward improved carotenoid accumulation.

Front Plant Sci

Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China.

Published: October 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plastids are a group of diverse organelles with conserved carotenoids synthesizing and sequestering functions in plants. They optimize the carotenoid composition and content in response to developmental transitions and environmental stimuli. In this review, we describe the turbulence and reforming of transcripts, proteins, and metabolic pathways for carotenoid metabolism and storage in various plastid types upon organogenesis and external influences, which have been studied using approaches including genomics, transcriptomics, proteomics, and metabonomics. Meanwhile, the coordination of plastid signaling and carotenoid metabolism including the effects of disturbed carotenoid biosynthesis on plastid morphology and function are also discussed. The "omics" insight extends our understanding of the interaction between plastids and carotenoids and provides significant implications for designing strategies for carotenoid-biofortified crops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9583013PMC
http://dx.doi.org/10.3389/fpls.2022.1001756DOI Listing

Publication Analysis

Top Keywords

carotenoid metabolism
8
carotenoid
5
"omics" insights
4
plastid
4
insights plastid
4
plastid behavior
4
behavior improved
4
improved carotenoid
4
carotenoid accumulation
4
accumulation plastids
4

Similar Publications

Populations of the acidophilic purple nonsulfur bacterium were identified in two geographically distinct thermal areas in Yellowstone National Park (Wyoming, USA), as confirmed by 16S rRNA gene sequencing and detection of characteristic methoxylated ketocarotenoids. Microcosm-based carbon uptake assays where oxygenic photosynthesis was excluded via addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea yielded a light-driven dissolved inorganic carbon (DIC) assimilation rate (7 ± 2 mg C g C h) comparable to those of highly productive algal mats in acidic hot springs, suggesting that may be performing photoautotrophy at the time of the assay. Rates of acetate assimilation were more than two orders of magnitude lower than DIC assimilation and did not differ between light and dark treatments, indicating photoheterotrophic use of acetate was not occurring, though photoheterotrophic assimilation of other organic compounds cannot be excluded.

View Article and Find Full Text PDF

Epiphytic orchids have evolved specialized adaptive strategies, such as aerial roots with water-absorbing velamen tissues, to cope with water-scarce and nutrient-deficient habitats. Our previous study revealed that the aerial roots of the epiphytic orchid Phalaenopsis aphrodite lack a gravitropic response, raising the possibility that alternative tropic mechanisms may contribute to their adaptation. In this study, we examined the effects of light and moisture on aerial root growth in P.

View Article and Find Full Text PDF

Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.

View Article and Find Full Text PDF

Plastoglobuli (PG) are plant lipoprotein compartments, present in plastid organelles. They are involved in the formation and/or storage of lipophilic metabolites. FIBRILLINs (FBNs) are one of the main PG-associated proteins and are particularly abundant in carotenoid-enriched chromoplasts found in ripe fruits and flowers.

View Article and Find Full Text PDF

Coronary artery atherosclerosis (CAA) stands as a prominent etiological contributor to global cardiovascular morbidity and mortality. Its pathogenesis entails intricate interplays among genetic predisposition, environmental factors, and lifestyle determinants. Trace elements, though necessitated in minuscule quantities, have emerged as potential modulators of CAA progression, yet their exact impact remains unclear.

View Article and Find Full Text PDF