Glymphatic system evaluation using diffusion tensor imaging in patients with traumatic brain injury.

Neuroradiology

Department of Radiology, Ajou University School of Medicine, Ajou University Medical Center, 164, World cup-ro, Yeongtong-gu, Suwon, 16499, South Korea.

Published: March 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Glymphatic system dysfunction has been reported in animal models of traumatic brain injury (TBI). This study aimed to evaluate the activity of the human glymphatic system using the non-invasive Diffusion Tensor Image-Analysis aLong the Perivascular Space (DTI-ALPS) method in patients with TBI.

Methods: A total of 89 patients with TBI (June 2018 to May 2020) were retrospectively enrolled, and 34 healthy volunteers were included who had no previous medical or neurological disease. Magnetic resonance imaging (MRI) with DTI was performed, and the ALPS index was calculated to evaluate the glymphatic system's activity. Wilcoxon rank-sum test was used to compare the ALPS index between patients with TBI and healthy controls. ANOVA was done to compare the ALPS index among controls and patients with mild/moderate-to-severe TBI. Multivariate logistic regression analyses were used to identify independent clinical and radiological factors associated with the ALPS index. The correlation between Glasgow Coma Scale (GCS) score and the ALPS index was also assessed.

Results: The ALPS index was significantly lower in patients with TBI than in healthy controls (median, 1.317 vs. 1.456, P < 0.0001). There were significant differences in the ALPS index between healthy controls and patients with mild/moderate-to-severe TBI (ANOVA, P < 0.001). The presence of subarachnoid hemorrhage (P = 0.004) and diffuse axonal injury (P = 0.001) was correlated with a lower ALPS index in the multivariate analysis. There was a weak positive correlation between the ALPS index and GCS scores (r = 0.242, P = 0.023).

Conclusions: The DTI-ALPS method is useful for evaluating glymphatic system impairment and quantifying its activity in patients with TBI.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00234-022-03073-xDOI Listing

Publication Analysis

Top Keywords

glymphatic system
12
patients tbi
12
diffusion tensor
8
traumatic brain
8
brain injury
8
compare alps
8
tbi healthy
8
healthy controls
8
patients
6
alps
6

Similar Publications

The glymphatic system (GS) is a newly discovered brain anatomy. Its discovery improves our understanding of brain fluid flow and waste removal paths and provides an anatomical basis for the flow of cerebral interstitial fluid (ISF) and cerebrospinal fluid (CSF). GS occurs through a normal exchange within perivascular space (PVS), facilitating the elimination of metabolic wastes generated by nerve cells from the brain.

View Article and Find Full Text PDF

The therapeutic effects of vortioxetine on mood and cognition have been documented in major depressive disorder (MDD). This study aims to examine whether vortioxetine can improve brain glymphatic system function and connections among functional brain networks and to explore the underlying relationships among these changes. A total of 34 patients with MDD and 41 healthy controls (HCs) were recruited in the study.

View Article and Find Full Text PDF

Background: Blood pressure (BP) is not steady. It varies over intervals from months to consecutive cardiac cycles and this variation contains meaningful information beyond mean BP. Variability over multiple clinic visits (VVV-BP) and during 24-hour ambulatory monitoring (ABPV) is positively related to risk of stroke and coronary artery disease and negatively associated with cognitive performance.

View Article and Find Full Text PDF

Sleep disorders encompass a range of diseases and symptoms that disrupt individual sleep patterns, degrade sleep quality, and diminish sleep efficiency. Currently, the mechanisms governing sleep regulation and the etiology of sleep disorders remain unclear, leading to clinical treatments that are primarily symptomatic due to the absence of precise intervention methods. Recent studies suggest that glymphatic-meningeal lymphatic route is responsible for the clearance of macromolecular metabolites from the brain, thus playing a pivotal role in maintaining sleep homeostasis and circadian rhythm.

View Article and Find Full Text PDF

Unifying Vascular Injury and Neurodegeneration: A Mechanistic Continuum in Cerebral Small Vessel Disease and Dementia.

Eur J Neurosci

September 2025

Global Health Neurology Lab, Sydney, New South Wales, Australia.

Cerebral small vessel disease (CSVD) is a major yet underappreciated driver of cognitive impairment and dementia, contributing to nearly half of all cases. Emerging evidence indicates that CSVD is not merely a coexisting vascular condition but an active amplifier of neurodegeneration, operating through a self-perpetuating cascade of microvascular injury, blood-brain barrier (BBB) breakdown, and glymphatic system dysfunction. In this hypothesis-driven review, we propose the Integrated Vascular-Neurodegenerative Continuum, a mechanistic model in which vascular pathology triggers and accelerates neurodegeneration via intersecting pathways, including chronic cerebral hypoperfusion, oxidative stress, and APOE ε4-associated endothelial vulnerability.

View Article and Find Full Text PDF