98%
921
2 minutes
20
Triclosan (TC) is one of the threats to the environment due to its bioaccumulative nature, persistency, combined toxicity in aquatic biota, and endocrine-disrupting nature. This study revealed the removal of TC via three distinct setups of vertical flow constructed wetlands (VFCW: B-VFCW (with biochar); PB-VFCW (with plant Colocasia and biochar); C-VFCW (without biochar but with plant)) operated with normal flow and tidal-flow (flooding/drying cycles of 72 h/24 h: B-TFCW; PB-TFCW; C-TFCW) mode for 216 h of the operation cycle. The effluent was analyzed for changes in TC load and wastewater parameters (COD, NO-N, NH-N, and DO). TC reduction efficiency (%) was found to be higher in PB-TFCW (98.41) followed by, C-TFCW (82.41), B-TFCW (77.51), PB-VFCW (71.83), C-VFCW (64.25), and B-VFCW (52.19) (p < 0.001). Reduction efficiency for COD (29-75 - 53.10%), and NH-N (86.5-97.9%) was better in TFCWs than that of setups with a normal mode of operation. TFCWs showed higher DO (3.87-4.89 mg L) during the operation period than that of VFCWs. The toxic impact of TC in plant stand was also assessed and results suggested low phototoxic and oxidative enzyme activities (catalase, CAT; superoxide dismutase, SOD; hydrogen peroxide, HO; malondialdehyde, MDA) in TFCWs. In summary, biochar addition and tidal flow operation played a significant role in oxidative- and microbial-mediated removals of TC in wastewater. This study provides an alternative strategy for the efficient removals of TC in constructed wetland systems and new insights into the toxic impact of pharmaceuticals on wetland plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.136875 | DOI Listing |
Neurochem Res
September 2025
School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
Metabolic synergy between astrocytes and neurons is key to maintaining normal brain function. As the main supporting cells in the brain, astrocytes work closely with neurons through intercellular metabolic synergy networks to jointly regulate energy metabolism, lipid metabolism, synaptic transmission, and cerebral blood flow. This important synergy is often disrupted in neurological diseases such as Alzheimer's disease, Parkinson's disease, and stroke.
View Article and Find Full Text PDFGen Physiol Biophys
September 2025
Pneumology Department, Zigong First People's Hospital, Zigong, China.
Chronic obstructive pulmonary disease (COPD) is characterized by airway remodeling and inflammation. Cigarette smoke extract (CSE) induces apoptosis, inflammation, and oxidative stress in COPD. Tripterygium glycosides (TG) are an active compound found in the root extracts of Tripterygium wilfordii Hook F (TWHF) that possesses anti-inflammatory and immunosuppressive effects.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Mathematics and Computer Science, Freie Universität, Berlin, Germany.
Coarse-grained (CG) molecular dynamics simulations extend the length and time scales of atomistic simulations by replacing groups of correlated atoms with CG beads. Machine-learned coarse-graining (MLCG) has recently emerged as a promising approach to construct highly accurate force fields for CG molecular dynamics. However, the calibration of MLCG force fields typically hinges on force matching, which demands extensive reference atomistic trajectories with corresponding force labels.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
Department of Cardiac Surgery, Chest Hospital, Tianjin University, Tianjin, China.
Rationale: Tracheomalacia, typically seen in relapsing polychondritis,[1] is rarely reported in association with congenital heart disease (CHD). In patients with pulmonary hypoperfusion-type CHD, surgical repair results in a rapid increase in pulmonary blood flow, predisposing them to mucus retention, airway obstruction, and respiratory distress. We describe acute airway collapse in a patient with double outlet right ventricle and congenital bronchial stenosis following cardiac repair.
View Article and Find Full Text PDFAnal Chem
September 2025
College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
A series of molecular logic gates with multiple biocomputing capabilities have been successfully fabricated by using four antibiotic residues [tetracycline (TET), chloramphenicol (CHL), kanamycin (KAN), and streptomycin (STR)] as inputs. The lateral flow strip biosensor was utilized to realize the visual and portable sensing of logic events. Four basic logic gates (OR, AND, XOR, and INHIBIT) and three cascade logic circuits (OR-INHIBIT-AND, 3AND-OR, and XOR-INHIBIT-OR-AND) were constructed.
View Article and Find Full Text PDF