Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Glioblastoma (GBM), which has a poor prognosis, accounts for 31% of all cancers in the brain and central nervous system. There is a paucity of research on prognostic indicators associated with the tumor immune microenvironment in GBM patients. Accurate tools for risk assessment of GBM patients are urgently needed.

Methods: In this study, we used weighted gene co-expression network analysis (WGCNA) and differentially expressed gene (DEG) methods to screen out GBM-related genes among immune-related genes (IRGs). Then, we used survival analysis and Cox regression analysis to identify prognostic genes among the GBM-related genes to further establish a risk signature, which was validated using methods including ROC analysis, stratification analysis, protein expression level validation (HPA), gene expression level validation based on public cohorts, and RT-qPCR. In order to provide clinicians with a useful tool to predict survival, a nomogram based on an assessment of IRGs and clinicopathological features was constructed and further validated using DCA, time-dependent ROC curve, etc. Results: Three immune-related genes were found: PPP4C ( < 0.001, HR = 0.514), C5AR1 ( < 0.001, HR = 1.215), and IL-10 ( < 0.001, HR = 1.047). An immune-related prognostic signature (IPS) was built to calculate risk scores for GBM patients; patients classified into different risk groups had significant differences in survival ( = 0.006). Then, we constructed a nomogram based on an assessment of the IRG-based signature, which was validated as a potential prediction tool for GBM survival rates, showing greater accuracy than the nomogram without the IPS when predicting 1-year (0.35 < < 0.50), 3-year (0.65 < < 0.80), and 5-year (0.65 < < 0.80) survival.

Conclusions: In conclusion, we integrated bioinformatics and experimental approaches to construct an IPS and a nomogram based on IPS for predicting GBM prognosis. The signature showed strong potential for prognostic prediction and could help in developing more precise diagnostic approaches and treatments for GBM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562700PMC
http://dx.doi.org/10.3390/cells11193000DOI Listing

Publication Analysis

Top Keywords

gbm patients
12
nomogram based
12
immune-related prognostic
8
prognostic signature
8
bioinformatics experimental
8
gbm-related genes
8
immune-related genes
8
signature validated
8
expression level
8
level validation
8

Similar Publications

Background: Neoantigen-based vaccines show promising therapeutic potential in solid tumors such as melanoma, GBM, NSCLC, and CRC. However, clinical responses remain suboptimal in stage IV patients, due to ineffective T-cell function and high tumor burdens. To overcome these limitations, our study investigates a combination strategy using neoantigen peptide vaccines and precision critical lesion radiotherapy (CLERT), which delivers immunomodulatory doses to key tumor regions synergistically enhance immune activation and inhibit progression in multifocal stage IV patients.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is an extremely aggressive brain tumor, marked by restricted therapeutic possibilities and a generally unfavorable prognosis. GBM's complexity and heterogeneity necessitate comprehensive genetic and immunological profiling to enhance therapeutic strategies.

Methods: The study integrated The Cancer Genome Atlas (TCGA) and Integrative Epidemiology Unit Open Genome-Wide Association Studies (IEU OpenGWAS) data to identify genetic factors influencing GBM using expression quantitative trait loci (eQTL) and genome-wide association studies (GWAS).

View Article and Find Full Text PDF

The scientific community has become more enthusiastic about ketogenic diet (KD) to improve the outcomes in medical conditions, including cancer by exploiting the reprogramed metabolism of cancer cells, making the diet a promising candidate as an adjuvant cancer therapy. From this perspective, the aim of this study was to provide a broad overview covering the therapeutic effects, evaluating the clinical evidence of clinical studies underlying the implementation of the KD in the context of cancer treatment and prognosis. A scoping literature search between the years 1990 and 2023 was carried out by using PRISMA guidelines and searching through different databases of the clinical studies supporting the effectiveness and benefits of KD in various carcinomas that could provide findings of evidence on the prognosis and clinical outcomes of cancer treatment.

View Article and Find Full Text PDF

Novel Thioredoxin reductase 1 inhibitor BS1801 relieves treatment resistance and triggers endoplasmic reticulum stress by elevating reactive oxygen species in glioma.

Redox Biol

August 2025

Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No.119 South 4th Ring Road West, Beijing, China; Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China; Beijing Engineering Research Center of Target

Glioma patients will inevitably develop resistance to temozolomide (TMZ) leading to tumor recurrence. By comparing genomic differences between primary and recurrent glioma patients, Thioredoxin reductase 1 (TrxR1) was identified as a crucial role in TMZ resistance. Glioma cells elevate the expression level of TXNRD1 to against TMZ-induced reactive oxygen species (ROS), thereby conferring TMZ resistance.

View Article and Find Full Text PDF

Temozolomide-Derived Therapeutic Strategies to Overcome Resistance in Glioblastoma.

J Med Chem

September 2025

Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States.

Glioblastoma multiforme (GBM) accounts for nearly half of malignant CNS tumors and has a dismal 5-year survival rate of 5.5%. The current standard of care comprises maximal surgical resection, followed by radiotherapy with concurrent temozolomide (TMZ) and subsequent adjuvant TMZ chemotherapy.

View Article and Find Full Text PDF