Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The tumor stroma, which comprises stromal cells and non-cellular elements, is a critical component of the tumor microenvironment (TME). The dynamic interactions between the tumor cells and the stroma may promote tumor progression and metastasis and dictate resistance to established cancer therapies. Therefore, novel antitumor approaches should combine anticancer and anti-stroma strategies targeting dysregulated tumor extracellular matrix (ECM). ECM remodeling is a hallmark of solid tumors, leading to extensive biochemical and biomechanical changes, affecting cell signaling and tumor tissue three-dimensional architecture. Increased deposition of fibrillar collagen is the most distinctive alteration of the tumor ECM. Consequently, several anticancer therapeutic strategies have been developed to reduce excessive tumor collagen deposition. Herein, we provide an overview of the current advances and challenges of the main approaches aiming at tumor collagen normalization, which include targeted anticancer drug delivery, promotion of degradation, modulation of structure and biosynthesis of collagen, and targeting cancer-associated fibroblasts, which are the major extracellular matrix producers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563908PMC
http://dx.doi.org/10.3390/cancers14194706DOI Listing

Publication Analysis

Top Keywords

tumor collagen
12
tumor
10
extracellular matrix
8
collagen
5
strategies efficient
4
efficient targeting
4
targeting tumor
4
collagen cancer
4
cancer therapy
4
therapy tumor
4

Similar Publications

Soft tissue sarcomas are a heterogeneous group of malignancies arising from mesenchymal cells. Recent advancements in genomic profiling have identified novel gene fusions in these tumors, offering new insights into their pathogenesis and potential therapeutic targets. Here, we describe a spindle cell sarcoma harboring a novel gene fusion.

View Article and Find Full Text PDF

Targeting collagen in "armored and cold" tumors: Overcoming barriers to cancer therapy.

Cancer Pathog Ther

September 2025

Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.

Collagen contributes to extracellular matrix formation and stiffness, providing a three-dimensional framework that supports the development and growth of solid tumors. By interacting with specific tumor cell receptors, collagen influences tumor cell signaling pathways, promoting cancer progression and drug resistance. Recent advancements in understanding the tumor extracellular matrix have underscored collagen's role in fostering an immunosuppressive tumor microenvironment (TME) and acting as a barrier to immunotherapy.

View Article and Find Full Text PDF

Hyaluronic acid promotes biomineralization of osteoblast-like cells - observations on two different barrier membranes.

Int J Implant Dent

September 2025

Department of Periodontology, Center for Biomedical Education and Research (ZBAF), School of Dentistry, Faculty of Health, Witten/Herdecke University, Witten, Germany.

Background: Guided bone regeneration (GBR) relies on biocompatible membranes to support osteogenesis. 1,4-butanediol diglycidyl ether (BDDE)-crosslinked hyaluronic acid (xHyA) has shown promise in enhancing bone regeneration, yet its mechanisms remain unclear.

Objective: This study evaluates the osteogenic effects of xHyA-functionalized native pericardium collagen membrane (NPCM) and ribose-crosslinked collagen membrane (RCCM) using an airlift culture model with SaOS-2 cells.

View Article and Find Full Text PDF

The tumor microenvironment (TME) is a complex system composed of the extracellular matrix (ECM) and various cell types, with collagen being one of its core components. Collagen heterogeneity profoundly influences tumor progression and the remodeling of the immune microenvironment by regulating tumor cell behavior, signaling pathways, and immune evasion in TME. Different subtypes of collagen significantly affect tumor growth, metastasis, and therapeutic responses by modulating the infiltration and function of immune cells.

View Article and Find Full Text PDF

Purpose: Bladder cancer (BLCA) is one of the most common urogenital malignancies in the world. The stroma of the tumor microenvironment (TME) largely affects the progression of BLCA. However, a stroma-relevant biomarker for predicting BLCA progression is still lacking.

View Article and Find Full Text PDF