98%
921
2 minutes
20
The delicate balance between constrictor and dilator mechanisms is a vital determinant of blood pressure and blood flow. The maintenance of this balance requires constant communication between different cell-types in the vascular wall. In this regard, the transient receptor potential vanilloid type 4 (TRPV4) ion channel, a Ca-permeable non-selective cation channel, has emerged as a crucial regulator of Ca-mediated changes in vascular reactivity. Recent studies suggest that TRPV4 channels regulate vasoconstriction and arterial pressure in the systemic and pulmonary vasculature. New emerging data support a dilatory role of endothelial TRPV4 channels, and both constrictor and dilator roles of smooth muscle TRPV4 channels. Moreover, TRPV4 channel activity has been implicated in physiological functions of vascular support cells, such as fibroblasts and pericytes, to assist the sustenance of vascular reactivity in response to changes in intravascular pressure or external stimulation. Importantly, a growing body of evidence connects abnormal TRPV4 channel activity to multiple vascular disorders. This chapter will review the current literature on the cell-type specific roles of vascular TRPV4 channels in regulating physiological function. Additionally, we summarize our understanding of the contribution of abnormal TRPV4 channel activity to various vascular disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.ctm.2022.07.003 | DOI Listing |
ACS Omega
September 2025
Neuroscience and Ageing Biology Division, CSIR- Central Drug Research Institute (CDRI), Lucknow 226031, India.
The TRPA1 channel has recently emerged as a critical target for pain relief since its antagonists target the beginning of the pain transduction pathway and, thus, are devoid of side effects such as sedation, dizziness, somnolence, or cognitive impairment. Despite this clinical significance, currently, no TRPA1 inhibitors suitable for therapeutic usage exist to target these channels. Since ancient times, natural products have been known to be a rich source of new drugs, useful therapeutic agents, as well as pharmacological tools.
View Article and Find Full Text PDFClinicians are often forced into the dilemma of whether to battle ocular inflammation or preserve vision imperiled by elevated intraocular pressure (IOP). Anti-inflammatory treatments utilizing glucocorticosteroid regimens may induce glaucoma by chronically elevating IOP via increased trabecular meshwork (TM) resistance to the flow of aqueous humor, but it is not known whether pressure transduction itself is impacted by steroids and how changes in TM mechanosignaling affect conventional outflow resistance and IOP. To address this, we investigated the role of TREK-1 (TWIK-related potassium channel-1), a mechanosensitive K channel, in regulation of outflow facility, transmembrane signaling and dexamethasone (DEX)-induced ocular hypertension (OHT).
View Article and Find Full Text PDFPain
August 2025
Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States.
Mechanotransduction is vital for sensing various mechanical stimuli, including blunt force and dynamic light touch. The sensation of a punctate mechanical force is very different from that of a brush swept across the skin, yet both involve mechanical stimulation of the skin and embedded sensory afferent endings. However, the sensory neuron mechanisms contributing to punctate vs light touch somatosensation, and how they might become dysregulated in nerve injury to cause pain, remain unclear.
View Article and Find Full Text PDFInt J Mol Sci
August 2025
Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland.
Cutaneous malignant melanoma remains one of the most aggressive forms of skin cancer, characterized by high metastatic potential and resistance to standard therapies. Emerging evidence suggests that transient receptor potential (TRP) channels, non-selective cation channels involved in calcium homeostasis, and cellular stress responses play a pivotal role in melanoma development and progression. This review highlights the physiological expression of key TRP subfamilies (TRPM1, TRPM7, TRPM8, TRPV1, TRPV4, and TRPM2) in melanocytes and discusses their dysregulation in melanoma cells.
View Article and Find Full Text PDFBiomater Sci
August 2025
Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315302, China.
Astrocytes, the abundant glial cells, maintain cerebral homeostasis and cognitive functions through calcium signalling - a regulatory pathway that is frequently altered in brain disease. Mitochondria serve as thermal hubs in living systems, generating metabolic heat during respiratory substrate oxidation and ATP synthesis. Crucially, mitochondrial temperature variations directly reflect metabolic status, as impaired ATP production induces thermodynamic shifts.
View Article and Find Full Text PDF