Mechanotransduction is vital for sensing various mechanical stimuli, including blunt force and dynamic light touch. The sensation of a punctate mechanical force is very different from that of a brush swept across the skin, yet both involve mechanical stimulation of the skin and embedded sensory afferent endings. However, the sensory neuron mechanisms contributing to punctate vs light touch somatosensation, and how they might become dysregulated in nerve injury to cause pain, remain unclear.
View Article and Find Full Text PDFTwo-thirds of patients with Fabry disease suffer debilitating pain attacks triggered by exercise, fever, and exposure to environmental heat. These patients face an even greater risk of heat-related episodic pain in the face of global climate change. Almost nothing is known about the biological mechanisms underlying heat-induced pain crises in Fabry disease, and there is no preclinical model available to study Fabry crises.
View Article and Find Full Text PDFRecent work demonstrates that epidermal keratinocytes are critical for normal touch sensation. However, it is unknown whether keratinocytes contribute to touch-evoked pain and hypersensitivity after tissue injury. Here, we used a mouse model of paclitaxel treatment to determine the extent to which keratinocyte activity contributes to the severe neuropathic pain that accompanies chemotherapy.
View Article and Find Full Text PDFFew analgesics identified using preclinical models have successfully translated to clinical use. These translational limitations may be due to the unidimensional nature of behavioral response measures used to assess rodent nociception. Advances in high-speed videography for pain behavior allow for objective quantification of nuanced aspects of evoked paw withdrawal responses.
View Article and Find Full Text PDFRecent work demonstrates that epidermal keratinocytes are critical for normal touch sensation. However, it is unknown if keratinocytes contribute to touch evoked pain and hypersensitivity following tissue injury. Here, we used inhibitory optogenetic and chemogenetic techniques to determine the extent to which keratinocyte activity contributes to the severe neuropathic pain that accompanies chemotherapeutic treatment.
View Article and Find Full Text PDF