Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Genome resequencing uncovers genome-wide DNA polymorphisms that are useful for the development of high-density InDel markers between two barley cultivars. Discovering genomic variations and developing genetic markers are crucial for genetics studies and molecular breeding in cereal crops. Although InDels (insertions and deletions) have become popular because of their abundance and ease of detection, discovery of genome-wide DNA polymorphisms and development of InDel markers in barley have lagged behind other cereal crops such as rice, maize and wheat. In this study, we re-sequenced two barley cultivars, Golden Promise (GP, a classic British spring barley variety) and Hua30 (a Chinese spring barley variety), and mapped clean reads to the reference Morex genome, and identified in total 13,933,145 single nucleotide polymorphisms (SNPs) and 1,240,456 InDels for GP with Morex, 11,297,100 SNPs and 781,687 InDels for Hua30 with Morex, and 13,742,399 SNPs and 1,191,597 InDels for GP with Hua30. We further characterized distinct types, chromosomal distribution patterns, genome location, functional effect, and other features of these DNA polymorphisms. Additionally, we revealed the functional relevance of these identified SNPs/InDels regarding different flowering times between Hua30 and GP within 17 flowering time genes. Furthermore, we developed a series of InDel markers and validated them experimentally in 43 barley core accessions, respectively. Finally, we rebuilt population structure and phylogenetic tree of these 43 barley core accessions. Collectively, all of these genetic resources will facilitate not only the basic research but also applied research in barley.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-022-02920-8DOI Listing

Publication Analysis

Top Keywords

dna polymorphisms
16
markers barley
12
barley cultivars
12
indel markers
12
barley
9
genome-wide dna
8
polymorphisms development
8
cereal crops
8
spring barley
8
barley variety
8

Similar Publications

The mechanism underlying the effects of Polycyclic aromatic hydrocarbons (PAHs) on missed abortion (MA) remains unclear. This study explored the relationship between PAHs exposure, telomere length (TL), metabolizing enzyme gene polymorphism, and MA in a case-control study with 253 pregnant women. A competitive enzyme-linked immunosorbent assay (ELISA) was used to quantify PAH-DNA adducts.

View Article and Find Full Text PDF

The big-headed turtle ( ), currently the only extant member of the genus and the family Platysternidae, has undergone severe population declines driven by poaching, illegal trade, and habitat loss, leading to its classification as Critically Endangered (CR) by the International Union for Conservation of Nature (IUCN). Despite its conservation status, persistent taxonomic ambiguities and unresolved phylogenetic relationships have hindered effective protection and management. This study integrated evidence from genome-wide single nucleotide polymorphisms (SNPs), mitochondrial DNA sequences ( , ), and morphological data to reconstruct the phylogeny and phylogeography of and revise its taxonomy.

View Article and Find Full Text PDF

Fluoropyrimidines are a class of chemotherapy drugs used to treat various solid tumors. 5-Fluorouracil (5-FU) an antimetabolite in the fluoropyrimidine family, which has shown remarkable efficacy against a variety of solid tumors, is a crucial medication in the treatment of cancer. However, severe organ toxicities frequently restrict its therapeutic potential.

View Article and Find Full Text PDF

Purpose: Hypertension (HTN) is a complex disorder regulated by multiple physiological systems. Each individual's underlying genetic architecture strongly influences inter-individual variability in therapeutic responses to HTN. Consequently, identifying candidate genes that contribute to the genetic basis of HTN remains a significant challenge.

View Article and Find Full Text PDF

Rationale: Weaver syndrome is a rare congenital overgrowth disorder characterized by a wide spectrum of clinical manifestations that often overlap with other overgrowth syndromes. It is primarily caused by pathogenic variants in the Enhancer of Zeste Homolog 2 (EZH2) gene on chromosome 7q36.1.

View Article and Find Full Text PDF