98%
921
2 minutes
20
Within a QTL, the genetic recombination and interactions among five and two functional variations at MdbHLH25 and MdWDR5A caused much complicated phenotype segregation in apple FFR and FCR. The storability of climacteric fruit like apple is a quantitative trait. We previously identified 62 quantitative trait loci (QTLs) associating flesh firmness retainability (FFR) and flesh crispness retainability (FCR), but only a few functional genetic variations were identified and validated. The genetic variation network controlling fruit storability is far to be understood and diagnostic markers are needed for molecular breeding. We previously identified overlapped QTLs F16.1/H16.2 for FFR and FCR using an F1 population derived from 'Zisai Pearl' × 'Red Fuji'. In this study, five and two single-nucleotide polymorphisms (SNPs) were identified on the candidate genes MdbHLH25 and MdWDR5A within the QTL region. The SNP1 A allele at MdbHLH25 promoter reduced the expression and SNP2 T allele and/or SNP4/5 GT alleles at the exons attenuated the function of MdbHLH25 by downregulating the expression of the target genes MdACS1, which in turn led to a reduction in ethylene production and maintenance of higher flesh crispness. The SNPs did not alter the protein-protein interaction between MdbHLH25 and MdWDR5A. The joint effect of SNP genotype combinations by the SNPs on MdbHLH25 (SNP1, SNP2, and SNP4) and MdWDR5A (SNPi and SNPii) led to a much broad spectrum of phenotypic segregation in FFR and FCR. Together, the dissection of these genetic variations contributes to understanding the complicated effects of a QTL and provides good potential for marker development in molecular breeding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00299-022-02929-z | DOI Listing |
J Appl Microbiol
September 2025
Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed-to-be-University), Pillaiyarkuppam, Pondicherry - 607 402, India.
Aim: To investigate the phenotypic and genomic features of three multidrug-resistant (MDR) clinical mucoid and non-mucoid uropathogenic Escherichia coli (UPEC) strains to understand their antimicrobial resistance, biofilm formation, and virulence in urinary tract infections (UTIs).
Methods And Results: The UPEC strains A5, A10, and A15 were isolated from two UTI patients. Phenotypic assays included colony morphology, antibiotic susceptibility, motility, and biofilm formation.
JAMA Netw Open
September 2025
Department of Epidemiology, University of Texas Health Science Center at Houston School of Public Health, Houston.
Importance: Trisomy 13 (T13) and trisomy 18 (T18) are chromosomal abnormalities with high mortality rates in the first year of life. Understanding differences in long-term survival between children with full vs mosaic or partial trisomy is crucial for prognosis and health care planning.
Objective: To examine the differences in 10-year survival between children with full T13 and T18 vs those with mosaic or partial trisomy.
Cell Mol Biol (Noisy-le-grand)
September 2025
Department of Biology, College of Education for Pure Sciences, University of Kerbala, Kerbala, Iraq.
Gastric cancer is one of the causes of deaths related to cancer across the globe and both genetic and environmental factors are the most prominent. Causes of its pathogenesis. This paper researches the expression of the C-FOS gene.
View Article and Find Full Text PDFHead Neck Pathol
September 2025
Department of Laboratory Medicine and Pathology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
Myoepithelial carcinoma (MECA) is a malignant neoplasm composed exclusively of myoepithelial cells and accounts for less than 1% of all salivary gland tumors. Its diagnosis is often challenging due to histologic overlaps with benign lesions and its variable morphologic presentation. Although molecular profiling has emerged as a valuable tool in salivary gland tumor classification, the genetic landscape of MECA remains incompletely defined.
View Article and Find Full Text PDFArch Microbiol
September 2025
Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
Salmonella enterica serovar Typhi, the etiological agent of Typhoid fever, remains a critical public health concern associated with high morbidity in many developing countries. The widespread emergence of multidrug-resistant (MDR) Salmonella Typhi strains against the fluoroquinolone group of antibiotics, particularly ciprofloxacin, poses a significant global therapeutic challenge with underlying resistance due to mutations in quinolone-resistance determining region (QRDR) of gyrA gene, encoding DNA gyrase subunit A (GyrA). In pursuit of alternative therapeutic candidates, the present study was designed to evaluate ciprofloxacin analogues against prevalent GyrA mutations (S83F, D87G, and D87N) to overcome fluoroquinolone resistance through machine learning (ML)-based approach.
View Article and Find Full Text PDF