Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) and deep learning (DL) projects without sharing sensitive data, such as patient records, financial data, or classified secrets.Open federated learning (OpenFL) framework is an open-source python-based tool for training ML/DL algorithms using the data-private collaborative learning paradigm of FL, irrespective of the use case. OpenFL works with training pipelines built with both TensorFlow and PyTorch, and can be easily extended to other ML and DL frameworks.In this manuscript, we present OpenFL and summarize its motivation and development characteristics, with the intention of facilitating its application to existing ML/DL model training in a production environment. We further provide recommendations to secure a federation using trusted execution environments to ensure explicit model security and integrity, as well as maintain data confidentiality. Finally, we describe the first real-world healthcare federations that use the OpenFL library, and highlight how it can be applied to other non-healthcare use cases.The OpenFL library is designed for real world scalability, trusted execution, and also prioritizes easy migration of centralized ML models into a federated training pipeline. Although OpenFL's initial use case was in healthcare, it is applicable beyond this domain and is now reaching wider adoption both in research and production settings. The tool is open-sourced atgithub.com/intel/openfl.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9715347PMC
http://dx.doi.org/10.1088/1361-6560/ac97d9DOI Listing

Publication Analysis

Top Keywords

federated learning
12
trusted execution
8
openfl library
8
openfl
6
learning
6
openfl open
4
federated
4
open federated
4
learning library
4
library federated
4

Similar Publications

Applications of Federated Large Language Model for Adverse Drug Reactions Prediction: Scoping Review.

J Med Internet Res

September 2025

Department of Information Systems and Cybersecurity, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, United States, 1 (210) 458-6300.

Background: Adverse drug reactions (ADR) present significant challenges in health care, where early prevention is vital for effective treatment and patient safety. Traditional supervised learning methods struggle to address heterogeneous health care data due to their unstructured nature, regulatory constraints, and restricted access to sensitive personal identifiable information.

Objective: This review aims to explore the potential of federated learning (FL) combined with natural language processing and large language models (LLMs) to enhance ADR prediction.

View Article and Find Full Text PDF

Protein kinases are central regulators of cell signaling and play pivotal roles in a wide array of diseases, most notably cancer and autoimmune disorders. The clinical success of kinase inhibitors-such as imatinib and osimertinib-has firmly established kinases as valuable drug targets. However, the development of selective, potent inhibitors remains challenging due to the conserved nature of the ATP-binding site, off-target effects, resistance mutations, and patient-specific variability.

View Article and Find Full Text PDF

Large-scale genomics data combined with Electronic Health Records (EHRs) illuminate the path towards personalized disease management and enhanced medical interventions. However, the absence of "gold standard" disease labels makes the development of machine learning models a challenging task. Additionally, imbalances in demographic representation within datasets compromise the development of unbiased healthcare solutions.

View Article and Find Full Text PDF

Early diagnosis of Parkinson's disease (PD) is crucial for timely treatment and disease management. Recent studies link PD to impaired facial muscle control, manifesting as "masked face" symptoms, offering a novel diagnostic approach through facial expression analysis. However, data privacy concerns and legal restrictions have resulted in significant "data silos", hindering data sharing and limiting the accuracy and generalizability of existing diagnostic models due to small, localized datasets.

View Article and Find Full Text PDF

Interpretable Semi-federated Learning for Multimodal Cardiac Imaging and Risk Stratification: A Privacy-Preserving Framework.

J Imaging Inform Med

September 2025

Heart Center, Department of Geriatrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.

The growing heterogeneity of cardiac patient data from hospitals and wearables necessitates predictive models that are tailored, comprehensible, and safeguard privacy. This study introduces PerFed-Cardio, a lightweight and interpretable semi-federated learning (Semi-FL) system for real-time cardiovascular risk stratification utilizing multimodal data, including cardiac imaging, physiological signals, and electronic health records (EHR). In contrast to conventional federated learning, where all clients engage uniformly, our methodology employs a personalized Semi-FL approach that enables high-capacity nodes (e.

View Article and Find Full Text PDF