Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Digitally-enhanced technologies are set to transform every aspect of manufacturing. Networks of sensors that compute at the edge (streamlining information flow from devices and providing real-time local data analysis), and emerging Cloud Finite Element Analysis technologies yield data at unprecedented scales, both in terms of volume and precision, providing information on complex processes and systems that had previously been impractical. Cloud Finite Element Analysis technologies enable proactive data collection in a supply chain of, for example the metal forming industry, throughout the life cycle of a product or process, which presents revolutionary opportunities for the development and evaluation of digitally-enhanced lubricants, which requires a coherent research agenda involving the merging of tribological knowledge, manufacturing and data science. In the present study, data obtained from a vast number of experimentally verified finite element simulation results is used for a metal forming process to develop a digitally-enhanced lubricant evaluation approach, by precisely representing the tribological boundary conditions at the workpiece/tooling interface, i.e., complex loading conditions of contact pressures, sliding speeds and temperatures. The presented approach combines the implementation of digital characteristics of the target forming process, data-guided lubricant testing and mechanism-based accurate theoretical modelling, enabling the development of data-centric lubricant limit diagrams and intuitive and quantitative evaluation of the lubricant performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9525279PMC
http://dx.doi.org/10.1038/s41467-022-33532-1DOI Listing

Publication Analysis

Top Keywords

finite element
12
digitally-enhanced lubricant
8
lubricant evaluation
8
cloud finite
8
element analysis
8
analysis technologies
8
metal forming
8
forming process
8
data
5
digitally-enhanced
4

Similar Publications

Finite Element Analysis of Mandibular Distraction Osteogenesis With a New Partially Bioabsorbable Distractor.

J Craniofac Surg

September 2025

Department of Craniomaxillofacial Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Plastic Surgery Hospital, Beijing, China.

Objective: We designed a new distractor pairing a bioabsorbable upper fixing plate fixed by bioabsorbable screws with a traditional titanium distractor to simplify the second surgery removing the distractor after mandibular distraction osteogenesis. The present study aims to evaluate its biomechanical properties using finite element method.

Materials And Methods: Ten computer-aided designed models simulating mandibles of 5 patients under 2 working conditions, the instance of distraction and mastication, were produced.

View Article and Find Full Text PDF

Background: Choosing the appropriate implants for reconstruction in revision TKA is essential for long-term fixation. While cones and augments are routinely utilized to address tibial defects, the effect of augment location and size on the biomechanical stability of revision TKA constructs and the indications for the use of metaphyseal cones are not known.

Questions/purposes: Is the risk of cement-implant debonding of revision TKA constructs impacted by the thickness and location (medial versus bicompartmental) of tibial augments and the presence of metaphyseal cones during (1) a demanding daily activity like stair ascent and (2) torsional loads?

Methods: Under institutional review board approval, we developed patient-specific finite-element models of revision TKA from four patients (three males and one female, ages 50 to 80 years, BMI 27 to 37 kg/m2) who underwent two-stage revision and had a CT scan with no metal artifact after first-stage implant removal.

View Article and Find Full Text PDF

Acoustic tweezers leverage acoustic radiation forces for noncontact manipulation. One of the core bottlenecks in multidimensional manipulation is the lack of a systematic design methodology, which prevents the generation of an acoustic field that simultaneously meets the collaborative control requirements of multi-degree-of-freedom forces and torques, making it difficult to achieve precise control under conditions of stable suspension, high-frequency rotation, and complex spatial constraints. To address this challenge, we develop an end-to-end inverse design methodology for acoustic tweezers based on coding metasurfaces, establishing a dual-objective, dual-scale optimization paradigm.

View Article and Find Full Text PDF

Finite Element Analysis of Endodontically Treated Mandibular Second Molars With Variable Root Morphologies: Endocrown vs. Post-And-Core Crown Restorations.

Aust Endod J

September 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.

This study aimed to investigate the biomechanical impact of root canal anatomical variations and restoration techniques on endodontically treated mandibular second molars using finite element analysis. Five root morphologies were modelled: separated-rooted (S), fused-rooted with V-shaped (F-V), U-shaped (F-U) or Ω-shaped (F-Ω) radicular grooves and single-canal fused-rooted (F-O). Micro-CT scans were performed before and after endodontic instrumentation to generate the finite element models: intact teeth, post-and-core crowns with 2- to 3-mm ferrules and endocrowns with 3- to 4-mm pulp chamber extensions.

View Article and Find Full Text PDF

Optical imaging offers high sensitivity and specificity for noninvasive cancer detection, but conventional techniques suffer from limited probe accumulation, tissue autofluorescence, and poor depth resolution. Afterglow luminescence overcomes autofluorescence by emitting persistent light after excitation, yet its utility in vivo remains hindered by weak tumor enrichment and two-dimensional readouts lacking spatial context. Here, we report luminescent-magnetic nanoparticles (LM-NPs) coencapsulating luminescent trianthracene (TA) molecules and iron oxide cores within the amphiphilic polymer pluronic-F127.

View Article and Find Full Text PDF