Chuanzhitongluo regulates microglia polarization and inflammatory response in acute ischemic stroke.

Brain Res Bull

Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China; Department of Emergency Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China. Electronic address:

Published: November 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Purpose: Chuanzhitongluo (CZTL), a traditional Chinese medicine mixture, is used in the recovery period of acute ischemic stroke (AIS), and effectively improves the prognosis of AIS patients. This study aims to evaluate whether CZTL regulates microglia polarization and inflammatory response to reduce brain damage in the acute phase of AIS.

Methods: A mouse model of AIS was prepared by the photochemical method. Cerebral infarct volume was detected by 2,3,5-Triphenyltetrazolium chloride (TTC) staining. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was used to assess neuronal apoptosis. Gene expression profile change was explored by Gene chip. Inflammatory factors were analyzed by Protein microarray. The Immunofluorescence double-labeling assay was executed to elucidate the effects of CD16 / Iba-1 and CD206 / Iba-1 in the peripheral area of cerebral ischemia.

Results: Results revealed that CZTL treatment alleviated the neurological impairment, reduced cerebral infarct volume, and inhibited neuronal apoptosis. CZTL altered gene expression profiles, which indicate that CZTL may be involved in regulating neuroinflammation. CZTL restrained inflammatory responses by down-regulated pro-inflammatory cytokines expression and enhanced anti-inflammatory cytokines level. Further experiments demonstrated that CZTL inhibited the activation of NLRP3 inflammasome, which decreasing the inflammatory response. In addition, CZTL promoted the transformation of microglia from M1 to M2 phenotype.

Conclusions: These results indicate that CZTL alleviates neuroinflammation and brain damage after AIS in mice, which may be mediated by modulating microglia polarization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2022.09.015DOI Listing

Publication Analysis

Top Keywords

microglia polarization
12
inflammatory response
12
cztl
9
regulates microglia
8
polarization inflammatory
8
acute ischemic
8
ischemic stroke
8
brain damage
8
cerebral infarct
8
infarct volume
8

Similar Publications

Microglia, the central nervous system's resident macrophages, are critical for immune defense, protecting neurons during infection. Their role in postnatal brain development, particularly after injury, remains unclear. Nucling, a protein up-regulated during cardiac muscle differentiation, regulates NF-κB, influencing apoptosis and cell proliferation.

View Article and Find Full Text PDF

Background: Ischemic stroke can damage the cerebral white matter, resulting in myelin loss and neurological deficits. Moreover, microglial activation plays an important role in ischemic stroke; therefore, inhibiting microglial activation has become an effective therapeutic target for ischemic stroke.

Objective: This study aimed to investigate the effects of electroacupuncture (EA) on microglial activation and polarization, and the role of oligodendrocyte genesis in myelin reformation after ischemic stroke.

View Article and Find Full Text PDF

Background: Ischemic stroke (IS) is a common neurological disease with a significant financial burden but lacks effective drugs. This study sought to explore the mechanisms underlying MAP kinase-interacting serine/threonine-protein kinase 2 (MKNK2), a gene enriched in the hypoxia-inducible factor-1 (HIF-1) signaling, in IS-related neurological injury.

Methods: Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reoxygenation (OGD/R) models were used in vivo and in vitro.

View Article and Find Full Text PDF

Background: Germinal matrix hemorrhage (GMH) is a common complication of premature infants with lifelong neurological consequences. Inflammation-mediated blood-brain barrier (BBB) disruption has been implicated as a main mechanism of secondary brain injury after GMH. The cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a crucial role in inflammation, yet its involvement in GMH pathophysiology remains unclear.

View Article and Find Full Text PDF

Background: Perioperative neurocognitive disorders (PND) is a significant clinical syndrome and neuroinflammation is an important pathological process. Matrix metalloproteinase 9 (MMP9) as a Zn2+-dependent matrix enzyme, not only maintains the integrity of the blood-brain barrier and synaptic plasticity, but also plays a key regulatory factor in peripheral and central nervous inflammation. This study aimed to investigate the effects of MMP9-mediated microglial polarization on surgery-induced neuroinflammation in aged rats and to provide novel targets for prevention and treatment of PND.

View Article and Find Full Text PDF