Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: EGR3 is implicated in angiogenesis in rats with cerebral ischemia/reperfusion injury (CIRI). This research aimed to explore the effect and in vivo and ex vivo mechanisms of EGR3 in CIRI.

Methods: CIRI rat models were established via middle cerebral artery occlusion. Cell models were established via oxygen-glucose deprivation/reoxygenation (OGD/R). Brain injury was assessed by neurological scoring, HE, and TTC staining. Inflammatory factors and oxidative stress markers were measured using corresponding kits. Mitochondrial membrane potential and mitochondrial respiration were examined by flow cytometry and respirometry. EGR3-miR-146 network was predicted on TransmiR v2.0 database. Target genes of miR-146 were screened on Starbase, Targetscan, and miRDB databases. miR-146 expression was determined by RT-qPCR. Levels of EGR3 and SORT1 were determined by Western blot. Binding relationships among EGR3, miR-146, and SORT1 were validated by dual-luciferase assay. EGR3, miR-146, and SORT1 levels were altered by injection or cell transfection to observe their functions.

Results: EGR3 was poorly-expressed in CIRI rats and OGD/R-induced neurons. EGR3 overexpression reduced inflammatory factor levels and attenuated oxidative stress and mitochondrial injury in CIRI rats and OGD/R-induced neurons. EGR3 bound to miR-146b promoter region. EGR3 promoted pri-miR-146a/146b processing and stimulated miR-146 transcription. miR-146 overexpression ameliorated oxidative stress and mitochondrial injury and miR-146 downregulation abolished the effect of EGR3 overexpression in vitro. miR-146 targeted SORT1. SORT1 overexpression invalidated the protective function of miR-146 overexpression on oxidative stress and mitochondrial injury in vitro.

Conclusion: EGR3 protected against CIRI by mitigating oxidative stress and mitochondrial injury via the miR-146/SORT1 axis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2022.148096DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
stress mitochondrial
16
mitochondrial injury
16
egr3
12
mir-146
10
cerebral ischemia/reperfusion
8
ischemia/reperfusion injury
8
injury ciri
8
models established
8
egr3 mir-146
8

Similar Publications

Background: The aim of this study was to establish a rat model of premature ovarian failure (POF) with cyclophosphamide (CTX), and explore the molecular basis of POF and the mechanism of Guishen-Erxian Decoction (GSEXD) to improve POF from the perspective of oxidative stress regulation of ovarian granulosa cell (OGC) DNA fragmentation.

Method: The study utilized SD rats to establish a POF model via CTX. Rats were divided into Control, POF group, three GSEXD dosage groups (low, medium, high), and a GSEXD+PI3K agonist group to assess GSEXD's therapeutic effects on oxidative stress, DNA fragmentation and ovarian damage.

View Article and Find Full Text PDF

Sepsis-induced cardiomyopathy (SIC) is a serious complication of sepsis. The relationship between SIC and protein acetylation, particularly the balance between acetylation and deacetylation in cardiomyocyte subcellular structures, as well as how nuclear-mitochondrial coordination maintains standard antioxidant stress capacity, remains unclear. This study focused on exploring the nuclear-mitochondrial regulatory mechanisms formed by the interplay of Sirtuin 3 (SIRT3) and Forkhead box O3a (FOXO3a).

View Article and Find Full Text PDF

Traumatic brain injuries (TBIs) are a risk factor for Alzheimer's disease (AD), and share several important pathological features including the development of neurofibrillary tangles (NFT) of tau protein. While this association is well established, the underlying pathogenesis is poorly defined and current treatment options remain limited, necessitating novel methods and approaches. In response we developed "TBI-on-a-chip", an trauma model utilizing murine cortical networks on microelectrode arrays (MEAs), capable of reproducing clinically relevant impact injuries while providing simultaneous morphological and electrophysiological readout.

View Article and Find Full Text PDF

Type-I Supramolecular Photosensitizer Enables GSH Depletion by Hydrogen Atom Transfer.

J Am Chem Soc

September 2025

Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.

Photodynamic therapy (PDT) induces oxidative stress that triggers a compensatory upregulation of intracellular glutathione (GSH), thereby diminishing PDT efficacy. The simultaneous generation of reactive oxygen species and depletion of GSH holds promise for amplifying oxidative damage and enhancing therapeutic outcomes yet remains a challenge. In this work, we present a Type-I supramolecular photosensitizer designed to deplete GSH through a hydrogen atom transfer mechanism while concurrently generating superoxide radicals.

View Article and Find Full Text PDF

Mitochondrial ClpX Inhibition Induces Ferroptosis and Blocks Pancreatic Cancer Cell Proliferation.

Chembiochem

September 2025

School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.

The ATPase caseinolytic protease X (ClpX), forming the ClpXP complex with caseinolytic protease P (ClpP), is essential for mitochondrial protein homeostasis. While ClpP targeting is a recognized anticancer strategy, the role of ClpX in cancer remains underexplored. In pancreatic ductal adenocarcinoma (PDAC), elevated CLPX expression correlates with poor prognosis, suggesting its oncogenic function.

View Article and Find Full Text PDF