98%
921
2 minutes
20
The nuclear envelope has long been considered primarily a physical barrier separating nuclear and cytosolic contents. More recently, nuclear compartmentalization has been shown to have additional regulatory functions in controlling gene expression. A sizeable proportion of protein-coding mRNAs is more prevalent in the nucleus than in the cytosol, suggesting regulated mRNA trafficking to the cytosol, but the mechanisms underlying controlled nuclear mRNA retention remain unclear. Here, we provide a comprehensive map of the subcellular localization of mRNAs in mature mouse cortical neurons, and reveal that transcripts retained in the nucleus comprise the majority of stable intron-retaining mRNAs. Systematically probing the fate of nuclear transcripts upon neuronal stimulation, we found opposite effects on sub-populations of transcripts: while some are targeted for degradation, others complete splicing to generate fully mature mRNAs that are exported to the cytosol and mediate rapid increases in protein levels. Finally, different forms of stimulation mobilize distinct groups of intron-retaining transcripts, with this selectivity arising from the activation of specific signaling pathways. Overall, our findings uncover a cue-specific control of intron retention as a major regulator of acute remodeling of the neuronal transcriptome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9627664 | PMC |
http://dx.doi.org/10.15252/embj.2021110192 | DOI Listing |
Neurochem Int
September 2025
Department of Neurobiology, College of Basic Medicine, Key Laboratory of Molecular Neurobiology of Ministry of Education, Naval Medical University, Shanghai 200433, China. Electronic address:
Traditionally, oligodendrocyte precursor cells (OPCs) were primarily regarded for their differentiation potential to mature oligodendrocytes that ensheath central nervous system (CNS) axons through myelin formation. Recent breakthroughs in single-cell sequencing and in vivo imaging technologies have revolutionized our understanding, revealing that OPCs engage in extensive dynamic interactions with diverse CNS cell populations during neurodevelopment, tissue homeostasis maintenance, and pathological microenvironment remodeling. Notably, while OPCs exhibit relatively conserved phenotypic signatures, their functional plasticity within heterogeneous microenvironments demonstrates significant spatial specificity and disease-context dependence.
View Article and Find Full Text PDFRedox Biol
September 2025
Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA; Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA. Electronic address:
Mitochondria are central to cellular function, acting as metabolic hubs that regulate energy transduction to communicate cellular status. A key component of this energetic regulation is the mitochondrial membrane potential (MMP), a charge separation across the inner mitochondrial membrane generated by the electron transport chain. Beyond MMP's canonical role in driving ATP synthesis, MMP acts as a dynamic signaling hub.
View Article and Find Full Text PDFFront Neural Circuits
September 2025
Neuroscience Institute, National Research Council (CNR), Pisa, Italy.
Neural circuits sculpt their structure and modify the strength of their connections to effectively adapt to the external stimuli throughout life. In response to practice and experience, the brain learns to distinguish previously undetectable stimulus features recurring in the external environment. The unconscious acquisition of improved perceptual abilities falls into a form of implicit learning known as perceptual learning.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
State Key Laboratory of Advanced Medical Materials and Devices, Medical College, Tianjin University, Tianjin, 300072, China.
Recent breakthroughs in tumor biology have redefined the tumor microenvironment as a dynamic ecosystem in which the nervous system has emerged as a pivotal regulator of oncogenesis. In addition to their classical developmental roles, neural‒tumor interactions orchestrate a sophisticated network that drives cancer initiation, stemness maintenance, metabolic reprogramming, and therapeutic evasion. This crosstalk operates through multimodal mechanisms, including paracrine signaling, electrophysiological interactions, and structural innervation guided by axon-derived guidance molecules.
View Article and Find Full Text PDFAdv Mater
September 2025
State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China.
Electrical deep brain stimulation is effective for epilepsy suppression, but will lead to neural tissue damage and inflammation due to implantation of electrodes and a pulse generator. Transcranial magnetic and transcranial ultrasound stimulation cannot directly generate effective electrical signals in deep brain regions. Here, the use of piezoelectric nanoparticles is proposed as wireless nanostimulators for deep brain electrical stimulation and minimally invasive suppression of epilepsy.
View Article and Find Full Text PDF