Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

: Mild cognitive impairment (MCI) is a transitional stage between normal aging and probable Alzheimer's disease. It is of great value to screen for MCI in the community. A novel machine learning (ML) model is composed of electroencephalography (EEG), eye tracking (ET), and neuropsychological assessments. This study has been proposed to identify MCI subjects from normal controls (NC). : Two cohorts were used in this study. Cohort 1 as the training and validation group, includes184 MCI patients and 152 NC subjects. Cohort 2 as an independent test group, includes 44 MCI and 48 NC individuals. EEG, ET, Neuropsychological Tests Battery (NTB), and clinical variables with age, gender, educational level, MoCA-B, and ACE-R were selected for all subjects. Receiver operating characteristic (ROC) curves were adopted to evaluate the capabilities of this tool to classify MCI from NC. The clinical model, the EEG and ET model, and the neuropsychological model were compared. : We found that the classification accuracy of the proposed model achieved 84.5 ± 4.43% and 88.8 ± 3.59% in Cohort 1 and Cohort 2, respectively. The area under curve (AUC) of the proposed tool achieved 0.941 (0.893-0.982) in Cohort 1 and 0.966 (0.921-0.988) in Cohort 2, respectively. : The proposed model incorporation of EEG, ET, and neuropsychological assessments yielded excellent classification performances, suggesting its potential for future application in cognitive decline prediction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497124PMC
http://dx.doi.org/10.3390/brainsci12091149DOI Listing

Publication Analysis

Top Keywords

machine learning
8
learning model
8
mild cognitive
8
cognitive impairment
8
subjects normal
8
normal controls
8
neuropsychological assessments
8
eeg neuropsychological
8
proposed model
8
model
7

Similar Publications

Aims And Objective: The field of medical statistics has experienced significant advancements driven by integrating innovative statistical methodologies. This study aims to conduct a comprehensive analysis to explore current trends, influential research areas, and future directions in medical statistics.

Methods: This paper maps the evolution of statistical methods used in medical research based on 4,919 relevant publications retrieved from the Web of Science.

View Article and Find Full Text PDF

Background: Cerebrovascular reactivity reflects changes in cerebral blood flow in response to an acute stimulus and is reflective of the brain's ability to match blood flow to demand. Functional MRI with a breath-hold task can be used to elicit this vasoactive response, but data validity hinges on subject compliance. Determining breath-hold compliance often requires external monitoring equipment.

View Article and Find Full Text PDF

Objectives: Non-small cell lung cancer (NSCLC) is associated with poor prognosis, with 30% of patients diagnosed at an advanced stage. Mutations in the and genes are important prognostic factors for NSCLC, and targeted therapies can significantly improve survival in these patients. Although tissue biopsy remains the gold standard for detecting gene mutations, it has limitations, including invasiveness, sampling errors due to tumor heterogeneity, and poor reproducibility.

View Article and Find Full Text PDF

Artificial Intelligence in Contact Dermatitis: Current and Future Perspectives.

Dermatitis

September 2025

From the Department of Dermatology, Venereology and Leprology, All India Institute of Medical Sciences (AIIMS), Bhopal, India.

Contact dermatitis (CD), which includes both allergic CD and irritant CD, is a common inflammatory condition that can pose significant diagnostic challenges. Although patch testing is the gold standard for identifying causative allergens for allergic contact dermatitis (ACD), it is time-consuming, subjective, and requires expert interpretation. Recent advancements in artificial intelligence (AI), particularly in machine learning (ML) and deep learning, have shown promise in improving the accuracy, efficiency, and accessibility of CD diagnosis and management.

View Article and Find Full Text PDF