98%
921
2 minutes
20
The analysis of chiral α-amino acids is of great significance in asymmetric synthesis, nutrition, food science, and microbiology. However, the ability of chiral recognition is difficult to achieve. Due to the demand for expensive equipment and skilled operators, traditional methods such as high-performance liquid chromatography are limited. The previously reported methods based on chemical sensor arrays usually cannot carry out the chiral analysis. Here, we developed a novel biosensor array based on the interaction between a suite of host-based luminescent bacteria and amino acids and used linear discriminant analysis to reflect their luminescence response patterns. This biosensor array could effectively discriminate chiral amino acids, including 19 L-amino acids, their corresponding D-enantiomers, and the achiral glycine. In addition, the determination of enantiomeric purity and quantitative ability has been proved. The successful identification of a complex system containing multiple chiral amino acids further demonstrates the superiority of the bioluminescent sensor array. Moreover, this sensor array could efficiently monitor the dynamic composition of free amino acids in the process of milk fermentation. Finally, the bioluminescence response mechanism of the luminescent bacteria for the recognition of chirality was clarified. This approach possessed the advantages of facile construction, high throughput, easy operation, high accuracy and fast response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2an01011a | DOI Listing |
Neurochem Res
September 2025
Biology and Health Laboratory, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco.
Parkinson's disease (PD) is characterized by impairments in motor control following the degeneration of dopamine-producing neurons located in the substantia nigra pars compacta. Environmental pesticides such as Paraquat (PQ) and Maneb (MB) contribute to the onset of PD by inducing oxidative stress (OS). This study evaluated the therapeutic efficacy of moderate physical activity (PA) on both motor and non-motor symptoms in a Wistar rat model of Paraquat and Maneb (PQ/MB) induced PD.
View Article and Find Full Text PDFVet Res Commun
September 2025
Department of Physiology, Faculty of Veterinary Medicine, Cairo University, PO 11221, Giza, Egypt.
This comprehensive review examines the versatile applications and effects of Moringa oleifera across multiple fish species in aquaculture systems amid growing challenges of rising feed costs and antimicrobial resistance. M. oleifera, commonly called the Miracle tree, contains an exceptional nutritional profile with high protein content (22.
View Article and Find Full Text PDFCurr Microbiol
September 2025
Department of Integrative Biotechnology, Sungkyunkwan University, Natural Science Campus, 2066 Seobu-ro, Jangan-Gu, Suwon-Si, Gyeonggi-Do, 16419, Republic of Korea.
A novel bacterial strain, SM-13 was isolated from the rhizospheric soil of Epipremnum aureum (Jade Pothos) sampled in Suwon, Republic of Korea. The isolate was Gram-stain-negative, aerobic, motile, rod-shaped, cream-coloured, oxidase- and catalase-positive. Strain SM-13 grew at the range of 15-37 °C (optimum, 25 °C), at pH 6.
View Article and Find Full Text PDFOrg Lett
September 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
The synthesis of tirzepatide relies heavily on solid phase peptide synthesis (SPPS), a process that is both costly and time-consuming. In this paper, a novel soluble liquid-phase assisted (LPPS) strategy for the efficient synthesis of tirzepatide is presented. The efficacy of the method is based on the distinct solubility properties of the soluble tag, which enables high yield synthesis while significantly reducing wastage of amino acids and solvents.
View Article and Find Full Text PDFFood Funct
September 2025
Department of Chemistry, King Saud University, 11451, Riyadh, Saudi Arabia.
Consumption of mango has been associated with a number of beneficial effects on health which have been attributed to phenolic catabolites originating from (poly)phenols following ingestion. To investigate the origins of potentially bioactive phenolic catabolites, ileostomists and subjects with a full gastrointestinal tract on a low(poly)phenol diet ingested a mango pulp purée containing 426 μmol of (poly)phenols consisting mainly of gallotannins and cinnamic acids, along with 231 μmol of the aromatic amino acids phenylalanine and tyrosine. Over a 24 h period post-mango intake plasma and urine were collected and analysed by UHPLC-HRMS.
View Article and Find Full Text PDF