Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mangroves continue to be threatened across their range by a mix of anthropogenic and climate change-related stress. Climate change-induced salinity is likely to alter the structure and functions of highly productive mangrove systems. However, we still lack a comprehensive understanding of how rising salinity affects forest structure and functions because of the limited availability of mangrove field data. Therefore, based on extensive spatiotemporal mangrove data covering a large-scale salinity gradient, collected from the world's largest single tract mangrove ecosystem - the Bangladesh Sundarbans, we, aimed to examine (QI) how rising salinity influences forest structure (e.g., stand density, diversity, leaf area index (LAI), etc.), functions (e.g., carbon stocks, forest growth), nutrients availability, and functional traits (e.g., specific leaf area, wood density). We also wanted to know (QII) how forest functions interact (direct vs. indirect) with biotic (i.e., stand structure, species richness, etc.) and abiotic factors (salinity, nutrients, light availability, etc.). We also asked (QIII) whether the functional variable decreases disproportionately with salinity and applied the power-law (i.e., Y = a X) to the salinity and functional variable relationships. In this study, we found that rises in salinity significantly impede forest growth and produce less productive ecosystems dominated by dwarf species while reducing stand structural properties (i.e., tree height, basal area, dominant tree height, LAI), soil carbon (organic and root carbon), and macronutrient availability in the soil (e.g., NH4+, P, and K). Besides, species-specific leaf area (related to resource acquisition) also decreased with salinity, whereas wood density (related to resource conservation) increased. We observed a declining abundance of the salt-intolerant climax species (Heritiera fomes) and dominance of the salt-tolerant species (Excoecaria agallocha, Ceriops decandra) in the high saline areas. In the case of biotic and abiotic factors, salinity and salinity-driven gap fraction (high transmission of light) had a strong negative impact on functional variables, while nutrients and LAI had a positive impact. In addition, the power-law explained the consistent decline of functional variables with salinity. Our study disentangles the negative effects of salinity on site quality in the Sundarbans mangrove ecosystem, and we recognize that nutrient availability and LAI are likely to buffer the less salt-tolerant species to maintain the ability to sequester carbon with sea-level rise. These novel findings advance our understanding of how a single stressor-salinity-can shape mangrove structure, functions, and productivity and offer decision makers a much-needed scientific basis for developing pragmatic ecosystem management and conservation plans in highly stressed coastal ecosystems across the globe.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.158662DOI Listing

Publication Analysis

Top Keywords

salinity
13
structure functions
12
leaf area
12
site quality
8
forest functions
8
rising salinity
8
forest structure
8
mangrove ecosystem
8
forest growth
8
wood density
8

Similar Publications

Arbuscular mycorrhizal fungi (AMF) play a crucial role in disease control by establishing symbiotic relationships with plant roots. AMF improve salinity tolerance in plants by regulating the Na/K ratio through selective ion transport and mediate osmotic regulation by inducing the accumulation of osmotic-compatible solutes such as glycine betaine and proline to enable plant cells to maintain water content and the metabolic balance. AMF can also activate antioxidant defense responses by stimulating enzymes that protect plant cells from harmful oxidation and pathological infections.

View Article and Find Full Text PDF

Global salinization increasingly threatens ecosystem integrity and the regulation of biogeochemical cycles. Our study reveals novel insights into the microbial contributions to the organohalide decomposition in saline environments, demonstrating the unprecedented ability of organohalide-respiring bacteria and to completely dechlorinate trichloroethene to non-toxic ethene under hypersaline conditions (up to 31.3 g/L) in long-term operations.

View Article and Find Full Text PDF

A total of 27 Alexandrium catenella strains isolated from Jinhae-Masan Bay were examined to assess differences in the toxicity and composition of paralytic shellfish toxins (PST). The strains exhibited widely variable toxicity, ranging from 0.02 to 360.

View Article and Find Full Text PDF

The response of dissolved organic matter dynamics to flood events in tidal estuaries.

J Environ Manage

September 2025

College of chemistry and chemical Engineering, Ocean University of China, Qingdao, China. Electronic address:

Tidal estuaries serve as critical zones for biogeochemical connectivity between terrestrial and oceanic ecosystems. With climate change magnifying the impact of flood events on riverine system, dissolved organic matter (DOM) cycling, the largest reactive elemental pool in ecosystems, in tidal estuaries tend to be more complex and remain poorly understood. To address this gap, the response of DOM dynamics to flood events in a typical tidal estuary was explored.

View Article and Find Full Text PDF

High-throughput phytoplankton monitoring and screening of harmful and bloom-forming algae in coastal waters with updated functional screening database.

Mar Pollut Bull

September 2025

Department of Science and Environmental Studies, The Education University of Hong Kong, New Territories, Hong Kong; State Key Laboratory of Marine Environmental Health, City University of Hong Kong, Kowloon, Hong Kong. Electronic address:

Climate change and anthropogenic pressures alter phytoplankton phenology, distribution, and bloom frequency. Healthy phytoplankton communities are crucial for biogeochemical processes, blue carbon sequestration, and climate change mitigation. By employing high-throughput 18S V4 rRNA metabarcoding, we addressed the need for profiling phytoplankton community and response mechanisms in urbanized coastal ecosystems.

View Article and Find Full Text PDF