98%
921
2 minutes
20
Introduction: This study aims to apply a conditional Generative Adversarial Network (cGAN) to generate synthetic Computed Tomography (sCT) from 0.35 Tesla Magnetic Resonance (MR) images of the thorax.
Methods: Sixty patients treated for lung lesions were enrolled and divided into training (32), validation (8), internal (10,T) and external (10,T) test set. Image accuracy of generated sCT was evaluated computing the mean absolute (MAE) and mean error (ME) with respect the original CT. Three treatment plans were calculated for each patient considering MRI as reference image: original CT, sCT (pure sCT) and sCT with GTV density override (hybrid sCT) were used as Electron Density (ED) map. Dose accuracy was evaluated comparing treatment plans in terms of gamma analysis and Dose Volume Histogram (DVH) parameters.
Results: No significant difference was observed between the test sets for image and dose accuracy parameters. Considering the whole test cohort, a MAE of 54.9 ± 10.5 HU and a ME of 4.4 ± 7.4 HU was obtained. Mean gamma passing rates for 2%/2mm, and 3%/3mm tolerance criteria were 95.5 ± 5.9% and 98.2 ± 4.1% for pure sCT, 96.1 ± 5.1% and 98.5 ± 3.9% for hybrid sCT: the difference between the two approaches was significant (p = 0.01). As regards DVH analysis, differences in target parameters estimation were found to be within 5% using hybrid approach and 20% using pure sCT.
Conclusion: The DL algorithm here presented can generate sCT images in the thorax with good image and dose accuracy, especially when the hybrid approach is used. The algorithm does not suffer from inter-scanner variability, making feasible the implementation of MR-only workflows for palliative treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.radonc.2022.08.028 | DOI Listing |
Int J Surg
September 2025
Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
Background: Percutaneous transthoracic lung biopsy (PTNB) guided by Computed Tomography (CT) greatly depends on the operators' skill for accuracy. This study aimed to evaluate whether three-dimensionally(3D) printed navigational templates for percutaneous transthoracic lung biopsy achieve diagnostic yield comparable to conventional computed tomography guidance.
Materials And Methods: Conducted from 1 November 2020, to 27 July 2023, this noninferiority randomized clinical trial included 159 patients with peripheral lung masses (≥30 mm).
AJR Am J Roentgenol
September 2025
Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
Patients with inflammation-associated coronary artery disease (CAD) may exhibit rapid progression and require regular coronary imaging. To evaluate the diagnostic performance of spectral photon-counting detector (PCD) coronary CTA with reduced radiation and contrast media doses for detecting coronary stenosis and in-stent restenosis in patients with inflammation-associated CAD. This prospective study enrolled patients with inflammation-associated CAD from January 2023 to March 2024.
View Article and Find Full Text PDFMed Phys
September 2025
Department of Radiology, Stony Brook University, New York, USA.
Background: In contrast-enhanced digital mammography (CEDM) and contrast-enhanced digital breast tomosynthesis (CEDBT), low-energy (LE) and high-energy (HE) images are acquired after injection of iodine contrast agent. Weighted subtraction is then applied to generate dual-energy (DE) images, where normal breast tissues are suppressed, leaving iodinated objects enhanced. Currently, clinical systems employ a dual-shot (DS) method, where LE and HE images are acquired with two separate exposures.
View Article and Find Full Text PDFMed Phys
September 2025
Department of Radiology, Keio University School of Medicine, Tokyo, Japan.
Background: Understanding respiratory motions of liver and its surrogate organs is crucial for precise dose delivery in liver cancer radiotherapy. Although these motions have been studied for respiratory motion management in the supine posture, few studies have quantified them and evaluated their correlations in the upright posture.
Purpose: This study quantified the respiratory motions of liver and surrogate organs and evaluated the correlations between the liver motions and surrogate signals for respiratory motion monitoring in both the supine and upright postures.
Med Phys
September 2025
Department of Radiation Oncology, Mayo Clinic in Florida, Jacksonville, Florida, USA.
Background: Dose-driven continuous scanning (DDCS) enhances the efficiency and precision of proton pencil beam delivery by reducing beam pauses inherent in discrete spot scanning (DSS). However, current DDCS optimization studies using traveling salesman problem (TSP) formulations often rely on fixed beam intensity and computationally expensive interpolation for move spot generation, limiting efficiency and methodological robustness.
Purpose: This study introduces a Break Spot-Guided (BSG) method, combined with two acceleration strategies-dose rate skipping and bounding-to optimize beam intensity while minimizing beam delivery time (BDT).