Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Development of novel sensors for the detection of lead ions (Pb) has attracted increasing interest due to their inherent toxic effects on human health and the environment. In this study, we describe two new polydiacetylene (PDA)-based liposome sensors for the colorimetric and fluorometric recognition of Pb in aqueous solution. In the sensor system, a thymine-1-acetic acid (TAA) or orotic acid (OA) group was reasonably introduced into the diacetylene monomer to work as a strong binding site for Pb. The TAA- or OA-functionalized monomer and 10,12-pentacosadiynoic acid (PCDA) were incorporated into PDA liposomes in aqueous solution. After UV light-induced polymerization, deep blue colored liposome solutions were obtained. Upon the addition of a series of transition metal cations into the liposome solutions, only Pb could induce a color change from blue to red observable by the naked eye and a large fluorescence enhancement. The results clearly showed that the PDA-EDEA-TAA and PDA-EDEA-OA liposomes could act as highly selective and sensitive probes to detect Pb in aqueous solution. The detection limits of PDA-EDEA-TAA and PDA-EDEA-OA systems are 38 nM and 25 nM, respectively. The excellent selectivity of PDA liposomes could be attributed to the stronger complexation behavior of Pb with TAA (or OA) and the carboxylic acid at the lipid-solution interface which could perturb the PDA conjugated backbone. In addition, the proposed sensors were successfully applied to detect trace amounts of Pb in real water samples with excellent recovery, indicating that the developed method had a good accuracy and precision for the analysis of trace Pb in practical samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364160PMC
http://dx.doi.org/10.1039/d2ra03435bDOI Listing

Publication Analysis

Top Keywords

aqueous solution
12
colorimetric fluorometric
8
pda liposomes
8
liposome solutions
8
pda-edea-taa pda-edea-oa
8
polydiacetylene-based colorimetric
4
sensors
4
fluorometric sensors
4
sensors lead
4
lead ion
4

Similar Publications

Hydrogen Bond Disruption-Induced Ion Rearrangement in Acetonitrile-Water-Sodium Sulfate Solutions.

J Phys Chem B

September 2025

Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.

Understanding hydrogen bonding and ion-specific interactions in water, sodium sulfate (NaSO), and acetonitrile (ACN) systems remains challenging due to their complex, dynamic nature. Here, Raman spectroscopy is employed to probe hydrogen bonding networks and ion reorganization in NaSO aqueous solutions with different ACN concentrations. The results indicate that, at low ACN concentrations in the ternary solutions, hydrogen bonding between ACN and water molecules disrupts the original hydration structure of the ions, resulting in the formation of small ion clusters via electrostatic interactions.

View Article and Find Full Text PDF

Cadmium (Cd) contamination in water poses a critical global challenge. A novel nanocomposite, montmorillonite (Mt)-supported nanoscale zero-valent iron (Mt-nZVI), synthesized by liquid phase reduction, offers a promising method for effectively removing Cd. The material underwent characterization through various techniques, including X-ray diffraction (XRD) and Scanning Electron Microscope(SEM).

View Article and Find Full Text PDF

Achieving high performance nanoscale photonic functionalities remains extraordinarily challenging when using naturally derived biomaterials. The ability to manipulate ultrathin films of structural proteins─combined with photolithographic control of their polymorphism─unlocks a compelling route toward engineering biopolymer-based photonic crystals with precisely defined photonic bandgaps and reconfigurable structural colors. In this work, we describe a robust, water-based fabrication process for silk/inorganic hybrid one-dimensional (1D) photonic crystals that overcomes many of the conventional difficulties in ensuring reproducibility, uniformity, and reliability at the nanoscale.

View Article and Find Full Text PDF

Solvation Structure of Np in a Noncomplexing Environment.

Inorg Chem

September 2025

Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

The solvation structure of an Np ion in an aqueous, noncomplexing and nonoxidizing environment of trifluoromethanesulfonic (triflic) acid was investigated with X-ray absorption spectroscopy (XAS) combined with ab initio molecular dynamics (AIMD) and time-dependent density functional theory (TDDFT) calculations. Np L-edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data were collected for Np in 1, 3, and 7 M triflic acid using a laboratory-scale spectrometer and separately at a synchrotron facility, producing data sets in excellent agreement. TDDFT calculations revealed a weak pre-edge feature not previously reported for Np L-edge XANES.

View Article and Find Full Text PDF

The study of the self-assembly of surfactants in aqueous solutions, though a traditional field, remains fascinating and full of novelty. In this article, the anionic perfluorodecanoic acid surfactant (PFA) is separately complexed with three hydroxyalkylamines (monoethanolamine (MEA), diethylamine (DEA), and triethanolamine (TEA)) in aqueous solutions. The transformation of aggregate morphologies from spherical unilamellar to nanotubes and then to spherical bilamellar is observed at room temperature, which is confirmed by cryo-transmission electron microscopy (cryo-TEM).

View Article and Find Full Text PDF