98%
921
2 minutes
20
Worldwide, honey bees are increasingly faced with periods of pollen scarcity, which can lead to nutritional deficiencies, especially of proteins and amino acids. These are essential for the proper functioning of the single organism and the colony. To understand how bees react to protein deficiency, under controlled conditions, we studied the effect of pollen deficiency on the main physiological parameters in two subspecies endemic of Algeria, Apis mellifera intermissa and Apismellifera sahariensis. Emerging workers of both subspecies were reared with two diets: one was pollen-fed, whereas the other pollen-deprived. Several physiological criteria were measured depending on the type of diet and subspecies: the survival of the bees, the amount of total protein in the hemolymph, hypopharyngeal glands development and the ovary development of workers. These last three parameters were assessed at three different ages (7, 14 and 21 days). At birth, sahariensis workers weighed more than intermissa. With the same protein diet, the average life expectancy of sahariensis was extended by 5.55 days compared to intermissa. Even if deprived of pollen, sahariensis lived longer than intermissa fed with pollen (p < 0.001). In the three age levels, the hypopharyngeal glands were more developed and less affected by pollen deficiency (p < 0.001) in sahariensis than in intermissa (p < 0.001). The total hemolymph protein was higher in intermissa than in sahariensis regardless of the diet, and was also higher in protein-fed than in deprived bees (p < 0.001). The ovaries developed more rapidly with a high proportion in intermissa than in sahariensis (p < 0.05) regardless of the diet, and was also higher in the bees fed with pollen than those deprived (p < 0.05). Pollen deficiency generates physiological alterations and modifications, the amplitude of which varied according to the subspecies of the bee studied.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409310 | PMC |
http://dx.doi.org/10.3390/insects13080727 | DOI Listing |
Physiol Plant
September 2025
State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China.
The Gα subunit RGA1, a crucial component of heterotrimeric G proteins, has been well-documented to enhance drought resistance in rice seedlings. However, its role during the reproductive stages has remained unexplored. This study aimed to investigate the function of RGA1 in mitigating drought-induced defects in anther and pollen development during pollen mother cell meiosis with Zhonghua 11 (WT), a Gα-deficient mutant (d1), and an RGA1-overexpressing line (OE-1).
View Article and Find Full Text PDFNew Phytol
September 2025
State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
Plasticity of floral longevity (FL) in response to pollination enables plants to maximize opportunities for pollen receipt and export under unfavorable pollination conditions, while minimizing costs under favorable ones, playing a crucial role in plant pollination. However, the prevalence of floral longevity plasticity (FLP) across the angiosperms remains unclear. Using data for FL consisting of 397 comparisons from 188 species, we provide the first global, cross-species quantification of FLP and assess its association with a range of biotic and abiotic factors.
View Article and Find Full Text PDFPlants (Basel)
August 2025
Institute of Vegetables, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou 450002, China.
Ogura cytoplasmic male sterility (CMS) in Chinese cabbage () is characterized by complete pollen abortion, wherein stamens fail to produce viable pollen while pistils retain normal fertility. This maternally inherited trait is valuable for hybrid breeding. This study employed integrated analysis of miRNA, transcriptome, and degradome sequencing data aligned to the Chinese cabbage reference genome to elucidate the molecular function of bra-miR9569 in Ogura CMS pollen fertility and explore its associated pathways.
View Article and Find Full Text PDFPlant J
August 2025
State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China.
Flavonols have been implicated in male sterility and pollen tube growth for over three decades; however, the molecular mechanisms mediating their accumulation in pollen grains remain poorly understood. In this study, a multidrug and toxic compound extrusion (MATE) transporter, OsMATE7, was identified as a key regulator of flavonol accumulation in mature pollen grains, thereby promoting pollen tube growth in rice (Oryza sativa). Mutation of OsMATE7 resulted in a significant reduction in seed setting rates.
View Article and Find Full Text PDFPlant Sci
October 2025
Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China. Electronic address:
Tapiscia sinensis Oliv. (Tapisciaceae), a functionally androdioecious species, displays male individuals with higher pollen viability compared to hermaphrodites. This study elucidates the molecular basis underlying reduced pollen viability and abnormal tapetum development in hermaphroditic flowers.
View Article and Find Full Text PDF