Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ogura cytoplasmic male sterility (CMS) in Chinese cabbage () is characterized by complete pollen abortion, wherein stamens fail to produce viable pollen while pistils retain normal fertility. This maternally inherited trait is valuable for hybrid breeding. This study employed integrated analysis of miRNA, transcriptome, and degradome sequencing data aligned to the Chinese cabbage reference genome to elucidate the molecular function of bra-miR9569 in Ogura CMS pollen fertility and explore its associated pathways. Subsequently, a bra-miR9569 overexpression vector was constructed and transformed into . Phenotypic characterization of transgenic Arabidopsis lines, combined with anther viability assessment and quantification of ATP content and reactive oxygen species (ROS) levels in Chinese cabbage, was performed to analyze the effects of bra-miR9569. Our findings demonstrate that mutation of the mitochondrial gene in Ogura CMS lines leads to upregulation of bra-miR9569. This microRNA negatively regulates the expression of the ATP-related gene , resulting in reduced H-ATPase activity. The consequent energy deficiency triggers cellular content degradation, ultimately causing failure of pollen wall formation and pollen abortion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12389279PMC
http://dx.doi.org/10.3390/plants14162604DOI Listing

Publication Analysis

Top Keywords

chinese cabbage
16
pollen fertility
8
pollen abortion
8
ogura cms
8
pollen
6
bra-mir9569
5
bra-mir9569 targets
4
targets gene
4
gene negatively
4
negatively regulate
4

Similar Publications

The Epigenetic Regulation of Agronomic Traits and Environmental Adaptability in Brassicas.

Plant Cell Environ

September 2025

State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, International Joint R & D Center of Hebei Prov

As essential sources of vegetables, oilseeds, and forage, Brassica crops exhibit complex epigenetic regulation mechanisms involving histone modifications, DNA modifications, RNA modifications, noncoding RNAs, and chromatin remodelling. The agronomic traits and environmental adaptability of crops are regulated by both genetic and epigenetic mechanisms, while epigenetic variation can affect plant phenotypes without changing gene sequences. Furthermore, the impact of epigenetic modifications on plant phenotype has accelerated the crop breeding process.

View Article and Find Full Text PDF

The soil in reclaimed shale gas sites is compacted and suffers from issues like poor drainage, drought conditions, and nutrient deficiency, posing challenges for agricultural production. In this study, rare earth tailings were incorporated into biochar at different mass ratios (rare earth tailings: biochar = 1:1, 1:2, 1:3, 1:4). Subsequently, a series of rare earth tailings-doped biochar materials (REE-BC) were prepared by calcination at 700°C.

View Article and Find Full Text PDF

Hybrid breeding based on male sterility requires the removal of male parents, which is time- and labor-intensive; however, the use of female sterile male parent can solve this problem. In the offspring of distant hybridization between Brassica oleracea and Brassica napus, we obtained a mutant, 5GH12-279, which not only fails to generate gynoecium (thereby causing female sterility) but also has serrated leaves that could be used as a phenotypic marker in seedling screening. Genetic analysis revealed that this trait was controlled by a single dominant gene.

View Article and Find Full Text PDF

Alleviating effects of polyphenol extract from rapeseed meal on type 2 diabetes in mice via modulation of gut microbiota and AMPK/mTOR signaling pathways.

Food Res Int

November 2025

Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition

Type 2 diabetes mellitus (T2DM) is a a complex metabolic disorder that poses a serious threat to human health. Although polyphenol extract from rapeseed meal (RMP) has demonstrated inhibitory activity against α-glucosidase, the alleviating effects on T2DM and the underlying molecular mechanisms remain largely unexplored in T2DM. In this study, the antidiabetic effects of RMP were investigated using a T2DM mouse model induced by a high-fat diet (HFD) combined with streptozotocin (STZ) administration.

View Article and Find Full Text PDF

Pesticides are of great significance in ensuring food yield. However, the extensive use of pesticides has led to severe environmental pollution and significant economic losses. Chitosan-based pesticide delivery systems potentially present a favorable approach to enhance pesticide using efficiency.

View Article and Find Full Text PDF