Experimental and Kinetic Modeling Study on High-Temperature Autoignition of Cyclohexene.

ACS Omega

Jiangsu Key Laboratory of Coal-Based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute and School of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, People's Republic of China.

Published: August 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cyclohexene is an important intermediate during the oxidation of cycloalkanes, which comprise a significant portion of real fuels. Thus, experimental data sets and kinetic models of cyclohexene play an important role in the understanding of the combustion of cycloalkanes and real fuels. In this work, an experimental and kinetic modeling study of the high-temperature ignition of cyclohexene is performed. Ignition delay time (IDT) measurements are carried out in a high-pressure shock tube (HPST). The studied pressures are 5, 10, and 20 bar; the equivalence ratios are 0.5, 1.0, and 2.0; and the temperatures range from 980 to 1400 K for IDT in HPST. It is shown that the IDTs of cyclohexene exhibit Arrhenius behaviors as a function of temperature, and the IDTs decrease as the equivalence ratio and pressure increase. The experimental results are simulated using three previous detailed kinetic mechanisms and an updated detailed mechanism in this work. The updated detailed kinetic mechanism exhibits good agreement with experimental results. Reaction path analysis and sensitivity analysis are performed to provide insights into the chemical kinetics controlling the ignition of cyclohexene. The results demonstrate that different detailed kinetic mechanisms are significantly different, and there are still no unified conclusions about the major reaction path for cyclohexene oxidation. However, it is worth noting that the abstraction reaction by oxygen at the allylic site and the submechanism of cyclopentene are of significant importance for the accurate prediction of IDTs of cyclohexene. The present experimental data set and kinetic model should be valuable to improve our understanding of the combustion chemistry of cycloalkanes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386856PMC
http://dx.doi.org/10.1021/acsomega.2c02229DOI Listing

Publication Analysis

Top Keywords

detailed kinetic
12
experimental kinetic
8
kinetic modeling
8
modeling study
8
study high-temperature
8
cyclohexene
8
real fuels
8
experimental data
8
understanding combustion
8
ignition cyclohexene
8

Similar Publications

Biomolecular dynamics in the microsecond-to-millisecond (µs-ms) timescale are linked to various biological functions, such as enzyme catalysis, allosteric regulation, and ligand recognition. In solution state NMR, Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments are commonly used to probe µs-ms timescale motions, providing detailed kinetic, thermodynamic, and mechanistic information at the atomic level. For investigating conformational dynamics in high-molecular-weight biomolecules, methyl groups serve as ideal probes due to their favorable relaxation properties, and C CPMG relaxation dispersion is widely employed for characterizing dynamics in selectively CH-labeled samples.

View Article and Find Full Text PDF

Here, Ln-Li co-doped YO@ZnO core-shell heterostructures were synthesized by three different techniques - intermediate layer conversion method, a hydrothermal method, and an interlayer mediated hydrothermal method. The synthesis procedure is optimized based on the thickness and compactness of the developed shell. The growth kinetics and synthesis mechanism of each adopted method have been explained in detail using XRD, FESEM, TEM, SAED, and EDX characterization techniques.

View Article and Find Full Text PDF

Co-Immobilization of Trypsin and Lysine -α- Oxidase For the Quantification of Lysine in Casein Hydrolysate. Evaluation with a Biosensor.

Cell Physiol Biochem

August 2025

Departamento de Procesos Químicos, Alimentos y Biotecnología. Facultad de Ingeniería y Ciencias Aplicadas. Universidad Técnica de Manabí, Portoviejo, Ecuador.

Background/aims: The quantification of amino acids in the dairy industry is necessary for quality control and for the formulation of functional foods. Thus, the development of enzymatic biosensors requires a detailed study of enzyme kinetics. Parameters such as KM and Vmax are necessary to optimize the sensitivity and specificity of the biosensor.

View Article and Find Full Text PDF

Fluorine-oxygen dual sites engineered on carbon enable high efficiency in the cycloaddition of carbon dioxide: synergistic effect, density functional theory validation and kinetic modeling.

J Colloid Interface Sci

September 2025

School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China. Electronic address:

Fluorine (F)-doped carbon materials (FCMs) were one-pot synthesized and applied as the catalysts for the cycloaddition of carbon dioxide (CO) towards the cyclic carbonate for the first time. In this process, F dopants and oxygen (O)-containing groups on the carbon surface played a key role in enhancing the activity. The FCM synthesized at 500 °C (FCM-500) with 5.

View Article and Find Full Text PDF

Background: During pregnancy, significant physiological, morphological, and hormonal changes profoundly affect women's biomechanics, increasing the risk of falls and musculoskeletal complaints, especially in the third trimester. To understand movement adaptations and musculoskeletal disorders in pregnant women, kinetic analysis using pregnant-specific multi-segment or musculoskeletal models is essential. This review aims to evaluate the development, applications and limitations of such models intended for kinetic analysis in pregnancy.

View Article and Find Full Text PDF