98%
921
2 minutes
20
We present a numerical study of the effects of monomer shape and magnetic nature of colloids on the behavior of a single magnetic filament subjected to the simultaneous action of shear flow and a stationary external magnetic field perpendicular to the flow. We find that based on the magnetic nature of monomers, magnetic filaments exhibit a completely different phenomenology. Applying an external magnetic field strongly inhibits tumbling only for filaments with ferromagnetic monomers. Filament orientation with respect to the flow direction is in this case independent of monomer shape. In contrast, reorientational dynamics in filaments with superparamagnetic monomers are not inhibited by applied magnetic fields, but enhanced. We find that the filaments with spherical, superparamagnetic monomers, depending on the flow and external magnetic field strength, assume semipersistent, collapsed, coiled conformations, and their characteristic time of tumbling is a function of field strength. However, external magnetic fields do not affect the characteristic time of tumbling for filaments with cubic, superparamagnetic monomers, but increase how often tumbling occurs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9367010 | PMC |
http://dx.doi.org/10.1021/acs.macromol.2c00738 | DOI Listing |
JMIR Med Inform
September 2025
Department of Radiology, Air Force Medical Center, Air Force Medical University, Fucheng Road 30, Haidian District, Beijing, CN.
Background: Lateral malleolar avulsion fracture (LMAF) and subfibular ossicle (SFO) are distinct entities that both present as small bone fragments near the lateral malleolus on imaging, yet require different treatment strategies. Clinical and radiological differentiation is challenging, which can impede timely and precise management. On imaging, magnetic resonance imaging (MRI) is the diagnostic gold standard for differentiating LMAF from SFO, whereas radiological differentiation on computed tomography (CT) alone is challenging in routine practice.
View Article and Find Full Text PDFAbdom Radiol (NY)
September 2025
Johns Hopkins University, Baltimore, United States.
Vulvar anatomy and pathology can be a challenging subject to master, especially given the paucity of resources available on the subject. This review provides an overview of normal anatomy and imaging appearance of the vulva, including the mons pubis, labia majora, labia minora, clitoris, clitoral hood, external urethral meatus, vestibule and vaginal introitus, the Bartholin (greater vestibular) glands and the Skene (lesser vestibular or paraurethral) glands. We will also review the imaging appearance of various benign and malignant pathologies that affect these structures, including congenital adrenal hyperplasia, vulvar cancers, benign cysts, and urethral diverticula, with an emphasis on MR imaging.
View Article and Find Full Text PDFRadiology
September 2025
Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Background MRI-derived arrhythmogenic substrate, including late gadolinium enhancement (LGE) and extracellular volume fraction (ECV), is indicative of sudden cardiac death (SCD) risk in nonischemic dilated cardiomyopathy (DCM). The relative prognostic value of LGE and ECV remains unclear. Purpose To evaluate the performance of LGE and T1 mapping in predicting SCD in patients with DCM and to explore clinical implementation.
View Article and Find Full Text PDFBioelectromagnetics
September 2025
Competence Centre of Sleep Medicine, Charité -Universitaetsmedizin Berlin, Berlin, Germany.
A new whole-body exposure facility for a randomized, double-blind, cross-over provocation study investigating possible effects of 50 Hz magnetic field exposure on sleep and markers of Alzheimer's disease has been developed and dosimetrically analyzed. The exposure facility was custom-tailored for the sleep laboratory where the study was carried out and enables magnetic flux densities of up to 30 μT with a maximum field inhomogeneity of less than ± 20%. Exposure is applied fully software-controlled and in a blinded and randomized manner.
View Article and Find Full Text PDFSmall Methods
September 2025
Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China.
Understanding the brain's complexity and developing treatments for its disorders necessitates advanced neural technologies. Magnetic fields can deeply penetrate biological tissues-including bone and air-without significant attenuation, offering a compelling approach for wireless, bidirectional neural interfacing. This review explores the rapidly advancing field of magnetic implantable devices and materials designed for modulation and sensing of the brain.
View Article and Find Full Text PDF