Exposure of carbon nanotubes affects testis and brain of common carp.

Environ Toxicol Pharmacol

Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India. Electronic address:

Published: October 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Carbon nanotubes production has been rapidly increasing for many potential applications, however, the environmental impact of this nanomaterial needs to be comprehended. The present work focused on unraveling the effects of single-walled carbon nanotubes (SWCNT) in the common carp, Cyprinus carpio. The physicochemical properties of SWCNT were analyzed with X-ray diffraction, Fourier transforms infra-red, UV-Vis absorption, transmission electron microscopy (TEM), and Raman spectroscopy before testing for exposure impact. The effects of SWCNT, were investigated by exposing to two doses viz., 10 and 50 μg/L, for 7 days in adult common carp, in vivo. Expression of key steroidogenic and transcription factor genes related to testis and brain were downregulated after the treatment. The concomitant decreases in serum testosterone and 11-ketotestosterone levels revealed the impact of SWCNT after exposure. Further, SWCNT exposure induced antioxidant enzymes namely glutathione-S-transferases, superoxide dismutase, and catalase in both testis and brain. Concurrently, histological and TEM analysis of testis revealed structural disarray. In addition, SWCNT treatment, in testicular and brain primary cell cultures decreased cell viability with an increase of reactive oxygen species levels, leading to a significant elevation of apoptotic cells. In line with this, low mitochondrial membrane potential and DNA damage were also observed during post SWCNT treatment. Taken together, transient exposure of SWCNT causes toxic effects and alters testicular and brain function in the common carp. Thus, the discharge of carbon nanotubes poses a greater risk to the aquatic environment warranting regulatory measures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.etap.2022.103957DOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
16
common carp
16
testis brain
12
swcnt
8
swcnt exposure
8
exposure swcnt
8
swcnt treatment
8
testicular brain
8
exposure
5
brain
5

Similar Publications

Bisphenol A (BPA) is a persistent organic pollutant with toxic effects on human health and ecosystems. In this study, the performance of MWCNT-OH functionalized with iron nanoparticles (MWCNT-OH@Fe) using sugarcane bagasse extract as a reducing agent (green synthesis) was evaluated for BPA adsorption. The kinetics are fast, between 10 and 20 min in the range of concentrations evaluated and the resistance to external film diffusion (external film mass transfer) identified as the rate-limiting step of the process.

View Article and Find Full Text PDF

High-entropy spinel (FeCoNiMnCr)O nanoparticles supported on carbon nanotubes for enhanced electrochemical seawater oxidation.

Chem Commun (Camb)

September 2025

Key Laboratory of Special Functional Materials for Ecological Environment and Information (Ministry of Education), School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China.

High-performance, low-cost electrocatalysts are essential for freshwater-independent seawater electrolysis. We design a SWCNT-supported (FeCoNiMnCr)O high-entropy spinel oxide by a hydrothermal method and air-firing, where the conductive network enhances charge transfer and active site exposure. The catalyst achieves 282 mV@10 mA cm with 100 h stability in alkaline seawater.

View Article and Find Full Text PDF

Effective removal of trace heavy metal ions from aqueous bodies is a pressing problem and requires significant improvement in the area of absorbent material in terms of removal efficiency and sustainability. We propose an efficient strategy to enhance the adsorption efficiency of carbon nanotubes (CNTs) by growing dendrimers on their surface. First, CNTs were pre-functionalized with maleic acid (MA) via Diels-Alder reaction in presence of a deep eutectic solvent under ultrasonication.

View Article and Find Full Text PDF

Uniform dispersion of carbon nanotubes in a polymer matrix is a prerequisite for high-performance nanotube-based composites. Here, we report an in situ polymerization route to synthesize a range of phenolic composites with high loading of single-wall carbon nanotubes (SWCNTs, >40 wt%) and continuously tunable viscoelasticity. SWCNTs can be directly and uniformly dispersed in cresols through noncovalent charge-transfer interactions without the need for surfactants, and further concentrated before in situ polymerization of the solvent molecules, yielding phenolic composites in the forms of conductive pastes, highly stretchy doughs, and hardened solids with high nanotube loading and much enhanced electrical conductivity (up to 2.

View Article and Find Full Text PDF

A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.

View Article and Find Full Text PDF