98%
921
2 minutes
20
Morphological analysis of protein channels is a key step for a thorough understanding of their biological function and mechanism. In this respect, molecular dynamics (MD) is a very powerful tool, enabling the description of relevant biological events at the atomic level, which might elude experimental observations, and pointing to the molecular determinants thereof. In this work, we present a computational geometry-based approach for the characterization of the shape and dynamics of biological ion channels or pores to be used in combination with MD trajectories. This technique relies on the earliest works of Edelsbrunner and on the NanoShaper software, which makes use of the alpha shape theory to build the solvent-excluded surface of a molecular system in an aqueous solution. In this framework, a channel can be simply defined as a cavity with two entrances on the opposite sides of a molecule. Morphological characterization, which includes identification of the main axis, the corresponding local radius, and the detailed description of the global shape of the cavity, is integrated with a physico-chemical description of the surface facing the pore lumen. Remarkably, the possible existence or temporary appearance of fenestrations from the channel interior towards the outer lipid matrix is also accounted for. As a test case, we applied the present approach to the analysis of an engineered protein channel, the mechanosensitive channel of large conductance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9358003 | PMC |
http://dx.doi.org/10.3389/fmolb.2022.933924 | DOI Listing |
J Adv Nurs
September 2025
Department of Sociology and Behavioral Sciences, De La Salle University, Manila, Philippines.
Aim: To explore the potential axiological shift in nursing, drawing upon a critical reading of the new definition of 'nursing' published by the International Council of Nurses (ICN) in June 2025, and to articulate its implications for research and doctoral education.
Design: Critical discussion paper.
Methods: Guided by critical inquiry and emancipatory nursing knowledge development approaches, this paper deploys retroductive analysis to interrogate the axiological commitments that inform and are generated by the 2025 ICN definition and how it relates to nursing research.
J Adv Nurs
September 2025
Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.
Aim: To explore the identity and body experiences of emerging adults with congenital heart disease.
Design: Qualitative descriptive study.
Methods: Narratives from 152 emerging adults about living with congenital heart disease and its impact on their identity and body experiences were analysed using template analysis.
Plant Genome
September 2025
Department of Agronomy, Iowa State University, Ames, Iowa, USA.
Crop growth rate is a critical physiological trait for forage and bioenergy crops like sorghum [Sorghum bicolor (L.) Moench], influencing overall crop productivity, particularly in photoperiod-sensitive (PS) types. Crop growth rate studies focus on either a physiological approach utilizing a few genotypes to analyze biomass accumulation or a genetic approach characterizing easily scorable proxy traits in larger populations.
View Article and Find Full Text PDFCirc Genom Precis Med
September 2025
Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China (J.Z., S.R., L.C., M.C., F.T., B.A., Y.Y., H.L.).
Background: Previous studies have suggested that the associations between ambient air pollution and atherosclerotic cardiovascular diseases (ASCVD) differ by genotype. A genome-wide approach provides a more comprehensive understanding of this relationship on a genomic scale.
Methods: Using data from ≈300 000 UK Biobank participants, we conducted a genome-wide interaction analysis on 10 745 802 variants.
Hypertension
September 2025
Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu (Z.W.).
Background: Early-onset preeclampsia poses significant risks to maternal and fetal health, necessitating a deeper understanding of its molecular mechanisms and effective therapeutic strategies.
Methods: Utilizing data from genome-wide association study and Mendelian randomization analysis, we investigated the relationship between mitochondrial DNA copy number and preeclampsia. Transcriptome sequencing, in vitro experiments, and animal studies were conducted to explore the roles of SENP3 and SETD7 in preeclampsia pathogenesis.