98%
921
2 minutes
20
Background: Psoriasis is a chronic inflammatory skin disease, the pathogenesis of which is more complicated and often requires long-term treatment. In particular, moderate to severe psoriasis usually requires systemic treatment. Psoriasis is also associated with many diseases, such as cardiometabolic diseases, malignant tumors, infections, and mood disorders. Psoriasis can appear at any age, and lead to a substantial burden for individuals and society. At present, psoriasis is still a treatable, but incurable, disease. Previous studies have found that microRNAs (miRNAs) play an important regulatory role in the progression of various diseases. Currently, miRNAs studies in psoriasis and dermatology are relatively new. Therefore, the identification of key miRNAs in psoriasis is helpful to elucidate the molecular mechanism of psoriasis.
Aim: To identify key molecular markers and signaling pathways to provide potential basis for the treatment and management of psoriasis.
Methods: The miRNA and mRNA data were obtained from the Gene Expression Omnibus database. Then, differentially expressed mRNAs (DEmRNAs) and differentially expressed miRNAs (DEmiRNAs) were screened out by limma R package. Subsequently, DEmRNAs were analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomics functional enrichment. The "WGCNA" R package was used to analyze the co-expression network of all miRNAs. In addition, we constructed miRNA-mRNA regulatory networks based on identified hub miRNAs. Finally, validation was performed. All experimental procedures were approved by the ethics committee of Chinese PLA General Hospital (S2021-012-01).
Results: A total of 639 DEmRNAs and 84 DEmiRNAs were identified. DEmRNAs screening criteria were adjusted (adj. value < 0.01 and |logFoldChange| (|logFC|) > 1. DEmiRNAs screening criteria were adj. value < 0.01 and |logFC| > 1.5. KEGG functional analysis demonstrated that DEmRNAs were significantly enriched in immune-related biological functions, for example, toll-like receptor signaling pathway, cytokine-cytokine receptor interaction, and chemokine signaling pathway. In weighted gene co-expression network analysis, turquoise module was the hub module. Moreover, 10 hub miRNAs were identified. Among these 10 hub miRNAs, only 8 hub miRNAs predicted the corresponding target mRNAs. 97 negatively regulated miRNA-mRNA pairs were involved in the miRNA-mRNA regulatory network, for example, hsa-miR-21-5p-claudin 8 (CLDN8), hsa-miR-30a-3p-interleukin-1B (IL-1B), and hsa-miR-181a-5p/hsa-miR-30c-2-3p-C-X-C motif chemokine ligand 9 (CXCL9). Real-time polymerase chain reaction results showed that IL-1B and CXCL9 were up-regulated and CLDN8 was down-regulated in psoriasis with statistically significant differences.
Conclusion: The identification of potential key molecular markers and signaling pathways provides potential research directions for further understanding the molecular mechanisms of psoriasis. This may also provide new research ideas for the prevention and treatment of psoriasis in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9254198 | PMC |
http://dx.doi.org/10.12998/wjcc.v10.i18.5965 | DOI Listing |
Blood Cells Mol Dis
September 2025
NHC Key Laboratory of Thalassemia Medicine, The First Afliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Guangxi Key Laboratory of Thalassemia Research, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China. Electronic address:
Objective: In patients with severe β-thalassemia, fetal hemoglobin (HbF) upregulation may provide an avenue to better therapeutic outcomes. The mechanisms that regulate the expression of HbF, however, are currently unclear. This study was developed with the goal of exploring biomarkers and molecular mechanisms associated with HbF expression to help inform the development of novel therapeutic strategies.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
Objective: This study employs integrated network toxicology and molecular docking to investigate the molecular basis underlying 4-nonylphenol (4-NP)-mediated enhancement of breast cancer susceptibility.
Methods: We integrated data from multiple databases, including ChEMBL, STITCH, Swiss Target Prediction, GeneCards, OMIM and TTD. Core compound-disease-associated target genes were identified through Protein-Protein Interaction (PPI) network analysis.
PLoS One
September 2025
Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
Background: Disulfidptosis, a novel cellular death manner, has yet to be fully explored within the context of pulmonary arterial hypertension (PAH). This study aims to identify genes implicated in PAH that are involved in disulfidptosis.
Method: Based on data from the GEO database, this study employed co-expression analysis, Weighted Gene Co-Expression Network Analysis (WGCNA), hub gene identification, and Gene Set Enrichment Analysis (GSEA) to uncover genes associated with PAH and disulfidptosis.
Medicine (Baltimore)
September 2025
Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China.
Type 2 diabetes mellitus (T2DM) and cardiogenic stroke (CS) are harmful to human health. Previous studies have shown a correlation between T2DM and CS, but the causal relationships and pathogenic mechanisms between T2DM and CS remain unclear. We downloaded T2DM and CS datasets from a genome-wide Association Study and performed Mendelian randomization (MR) analysis using the TwoSampleMR package in R software.
View Article and Find Full Text PDFBiomed Hub
July 2025
Division of Cardiovascular Research, School of Medicine, University of Dundee, Dundee, UK.
Introduction: Micro-RNAs (miRNAs) participate in different biological processes, including fetal hypoxia. In this work, we aimed to evaluate the existence of a miRNA differential expression profile in maternal blood of pregnancies affected with late-onset fetal growth restriction (LO-FGR).
Methods: In a prospective study, a group of 35 fetuses were evaluated with Doppler ultrasound after 36 weeks.