98%
921
2 minutes
20
Leaf morphology is one of the most important features of the ideal plant architecture. However, the genetic and molecular mechanisms controlling this feature in crops remain largely unknown. Here, we characterized the rice (Oryza sativa) wide leaf 1 (wl1) mutant, which has wider leaves than the wild-type due to more vascular bundles and greater distance between small vascular bundles. WL1 encodes a Cys-2/His-2-type zinc finger protein that interacts with Tillering and Dwarf 1 (TAD1), a co-activator of the anaphase-promoting complex/cyclosome (APC/C) (a multi-subunit E3 ligase). The APC/CTAD1 complex degrades WL1 via the ubiquitin-26S proteasome degradation pathway. Loss-of-function of TAD1 resulted in plants with narrow leaves due to reduced vascular bundle numbers and distance between the small vascular bundles. Interestingly, we found that WL1 negatively regulated the expression of a narrow leaf gene, NARROW LEAF 1 (NAL1), by recruiting the co-repressor TOPLESS-RELATED PROTEIN and directly binding to the NAL1 regulatory region to inhibit its expression by reducing the chromatin histone acetylation. Furthermore, biochemical and genetic analyses revealed that TAD1, WL1, and NAL1 operated in a common pathway to control the leaf width. Our study establishes an important framework for understanding the APC/CTAD1-WL1-NAL1 pathway-mediated control of leaf width in rice, and provides insights for improving crop plant architecture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9614488 | PMC |
http://dx.doi.org/10.1093/plcell/koac232 | DOI Listing |
Cureus
August 2025
Department of Radiology, Aichi Medical University, Nagakute, JPN.
Background This study was conducted to examine the effects of moving the isocenter (IC) position from the lesion to the center of the brain on stereotactic radiosurgery (SRS) planning with volumetric-modulated arcs (VMA) using the High-Definition Dynamic Radiosurgery (HDRS) platform, a combination of the Agility multileaf collimator (MLC) (Elekta AB, Stockholm, Sweden) and the Monaco planning system (Elekta AB), for single brain metastases (BMs). Methodology The study subject included 36 clinical BMs with the gross tumor volume (GTV) ranging from 0.04 to 48.
View Article and Find Full Text PDFCureus
August 2025
Department of Radiology, Aichi Medical University, Nagakute, JPN.
Purpose This planning study aimed to clarify the significance of inverse planning with variable dose rate (VDR) and the segment shape optimization (SSO) in the quality and efficiency of dynamic conformal arcs (DCA) using the high-definition dynamic radiosurgery (HDRS) platform for stereotactic radiosurgery (SRS) of single brain metastases (BMs). Materials and methods Twenty clinical BMs were included, with the gross tumor volume (GTV) ranging from 0.33 cc to 48.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Shanghai Agrobiological Gene Center, Shanghai, China.
Lettuce prefers a cold and cool climate, and high temperatures can lead to many problems such as tip burn that decrease yield and quality. NAC (NAM, ATAF1/2, and CUC2) proteins are important regulatory factors in abiotic stress responses. In our previous transcriptomic analysis, we identified that is involved in the response to heat stress in lettuce.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
September 2025
Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India.
Plant growth-promoting rhizobacteria (PGPR) are known to enhance the productivity, development, yield, and soil health of both medicinal and vegetable crops. The present investigation evaluated the influence of PGPR on the growth attributes and physiological parameters of ginger, alongside soil quality, under field conditions. Field trials were carried out over three consecutive years (2020 to 2022), with ginger being planted each March.
View Article and Find Full Text PDFBMC Plant Biol
August 2025
Colorado Water Centre, Colorado State University, Fort Collins, CO, USA.
Background: Date palm (Phoenix dactylifera L.) is a vital fruit crop cultivated in hot, arid regions due to its economic, nutritional, and ecological significance. Understanding the morphological diversity among different genotypes is crucial for breeding, conservation, and improving yield potential.
View Article and Find Full Text PDF