Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, to improve the processing performance of whole grain highland barley flour (whole grain HB flour), they were prepared by sand-roasting, far-infrared baking, steam explosion, and extrusion, and the effects of on functional properties and storage characteristics were measured. The results indicated that sand-roasting, far-infrared baking, and steam explosion all caused cracks and honeycomb structures in the outer layer and endosperm of the highland barley. The XRD analysis results indicated that highland barley starch treated by far-infrared baking exhibited typical A-type crystal structure, while sand-roasting, steam explosion, and extrusion presented the typical V-type. The results of DSC analysis revealed that the onset temperature (To), peak temperature (Tp), gelatinization enthalpy (ΔH), peak viscosity (PV), trough viscosity (TV), and final viscosity (FV) decreased significantly, while the swelling power, water-holding capacity and oil-holding capacity increased significantly. During the storage period, the moisture content and lipase activity of the whole grain HB flour after thermal treatment remained at a low level; the fatty acid value, peroxide value, and malondialdehyde value increased; finally, the cooked whole grain HB flour was unstable during storage. The functional properties of whole grain HB flour can be improved by steam explosion, and will then have better storage stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322192PMC
http://dx.doi.org/10.3390/foods11142021DOI Listing

Publication Analysis

Top Keywords

highland barley
16
grain flour
16
steam explosion
16
far-infrared baking
12
thermal treatment
8
properties storage
8
storage stability
8
grain highland
8
barley flour
8
sand-roasting far-infrared
8

Similar Publications

Analysis of antioxidant capacity and wine quality characteristics of fermented colored highland barley based on metabolomics.

Food Chem X

August 2025

College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China.

Colored highland barley is a promising nutrient-rich functional food. However, antioxidant capacity after fermentation and the quality of the resulting wine remain unexplored. This study investigated how the accumulation of non-volatile metabolites in four fermented colored highland barley varieties influences antioxidant capacity and wine quality.

View Article and Find Full Text PDF

In embedding systems, protein-polysaccharide complexes can be utilized as wall materials to improve the bioavailability and activity of bioactive substances during delivery. This study used the antisolvent precipitation method to manufacture gliadin from highland barley distillers' grains (HBDGG)-chitosan (Cs) nanoparticles. Using a variety of characterization techniques, the microstructure and interaction mechanism of HBDGG-Cs nanoparticles were examined, and their stability was assessed.

View Article and Find Full Text PDF

Effects of water migration and grain structural evolution on substance dissolution and consistency variation during cooking of different foxtail millet varieties porridge.

Food Chem

August 2025

College of Food Science and Nutritional Engineering, China Agricultural University, National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China. Electronic address: shen

Different millet varieties exhibit distinct porridge consistency, influencing consumer preferences. This study investigated water migration and grain structural evolution influencing solids leaching and consistency in five commercial foxtail millet varieties during cooking. Using texture analysis, low-field NMR, stereomicroscopy, and leaching assays, we quantified dynamic changes over a 40-min cooking period.

View Article and Find Full Text PDF

Preparation Optimization and Antioxidant Properties of the -Glucan and Ferulic Acid/Quercetin Complex from Highland Barley ( var. ).

Foods

August 2025

Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.

Polysaccharides and phenols are commonly co-localized in various plant-derived foods, including highland barley ( L. var. Hook.

View Article and Find Full Text PDF

This study investigated the synergistic effects of hydrocolloids (guar gum, GG; xanthan gum, XG; and carboxymethyl chitosan, CMC) and alkaline salts (NaCO and NaHCO) on germinated highland barley noodles. Hydrocolloids reduced cooking loss, breakage rate, and thermal decomposition of noodles while improving elongation, hardness, springiness, and chewiness. GG exhibited the most significant effects.

View Article and Find Full Text PDF