Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Drugs based on synthetic lethality have advantages such as inhibiting tumor growth and affecting normal tissue . However, specific targets for osteosarcoma have not been acknowledged yet. In this study, a non-targeted but controllable drug delivery system has been applied to selectively enhance synthetic lethality in osteosarcoma , using the magnetic-driven hydrogel microrobots. In this study, EPZ015666, a PRMT5 inhibitor, was selected as the synthetic lethality drug. Then, the drug was carried by hydrogel microrobots containing FeO. Morphological characteristics of the microrobots were detected using electron microscopy. drug effect was detected by the CCK-8 assay kit, Western blotting, etc. Swimming of microrobots was observed by a timing microscope. Selective inhibition was verified by cultured tumors in an increasing magnetic field. Genomic mutation of MTAP deletion occurred commonly in pan-cancer in the TCGA database (nearly 10.00%) and in osteosarcoma in the TARGET database (23.86%). HOS and its derivatives, 143B and HOS/MNNG, were detected by MTAP deletion according to the CCLE database and RT-PCR. EPZ015666, the PRMT5 inhibitor, could reduce the SDMA modification and inhibition of tumor growth of 143B and HOS/MNNG. The hydrogel microrobot drug delivery system was synthesized, and the drug was stained by rhodamine. The microrobots were powered actively by a magnetic field. A simulation of the selected inhibition of microrobots was performed and lower cell viability of tumor cells was detected by adding a high dose of microrobots. Our magnetic-driven drug delivery system could carry synthetic lethality drugs. Meanwhile, the selective inhibition of this system could be easily controlled by programming the strength of the magnetic field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299081PMC
http://dx.doi.org/10.3389/fbioe.2022.911455DOI Listing

Publication Analysis

Top Keywords

synthetic lethality
20
hydrogel microrobots
12
drug delivery
12
delivery system
12
magnetic field
12
magnetic-driven hydrogel
8
microrobots
8
selectively enhance
8
enhance synthetic
8
tumor growth
8

Similar Publications

Targeted degradation of Werner syndrome helicase (WRN) via ligand-directed covalent hydrophobic tagging.

Eur J Med Chem

September 2025

State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China. Electronic address:

The Werner syndrome RecQ helicase (WRN) has recently emerged as a novel synthetic lethality target for microsatellite instability-high (MSI-H) cancers. However, available WRN inhibitors or degraders is still lacking so far. Particularly, chemically designed probes capable of degrading WRN irrespective of microsatellite status remain unexplored.

View Article and Find Full Text PDF

The Discovery of RP-2119: A Potent, Selective, and Orally Bioavailable Polθ ATPase Inhibitor.

J Med Chem

September 2025

Repare Therapeutics, 7171 Frederick-Banting, Building 2, H4S 1Z9 Montréal, Québec, Canada.

DNA polymerase theta (Polθ) plays a critical role in repairing DNA double-strand breaks through microhomology-mediated end joining (MMEJ) and has emerged as a key synthetic lethal drug target in cancers with homologous recombination (HR) deficiencies. Its inhibition has shown a strong potential to synergize with PARP inhibitors, particularly in tumors with deleterious or mutations. Here, we describe the discovery and preclinical development of RP-2119, a selective, potent, and bioavailable Polθ ATPase inhibitor.

View Article and Find Full Text PDF

Cancer is a complex and heterogeneous disease characterized by the accumulation of genetic and epigenetic alterations that drive uncontrolled cellular proliferation and survival. This review provides a comprehensive overview of key cancer driver genes, including oncogenes such as KRAS and PIK3CA, as well as tumor suppressor genes like TP53, PTEN, and CDKN2A, highlighting their molecular mechanisms and roles across various types of cancer. Leveraging insights from large-scale cancer genome initiatives and whole-genome sequencing, we examine the landscape of somatic mutations and their association with hallmark cancer pathways, including cell cycle regulation, apoptosis, metabolic reprogramming, and immune evasion.

View Article and Find Full Text PDF

DDX3X mutation and Epstein-Barr virus cooperate to induce R-loop-dependent oncogenesis.

Cell Rep

September 2025

Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pôle de Recherches Sino-Français en Science du Vivant et Gé

RNA helicase DDX3X is generally implicated in inflammasome activation and anti-viral responses. We characterize the common features of scattered DDX3X mutations in lymphoid cancers using molecular dynamics simulation and crystallization, thereby demonstrating their crucial role in Epstein-Barr virus (EBV) lytic gene-driven oncogenic processes. The DDX3X mutation is significantly related to impaired stimulator of interferon genes (STING)/ interferon regulatory factor 7 (IRF-7)/interferon (IFN)-α/β-mediated innate immunity, overexpression of EBV lytic gene BNLF2b, and increased formation of R-loops.

View Article and Find Full Text PDF

Co-Targeting BCL-xL with MCL-1 Induces Lethal Mitochondrial Dysfunction in Diffuse Mesothelioma.

Mol Cancer Ther

September 2025

David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery and the Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.

Diffuse mesothelioma is a rare but highly aggressive and treatment-resistant neoplasm with low survival rates. Effective therapeutic strategies are limited, and resistance to treatment is a major obstacle. Myeloid cell leukemia (MCL)-1 and B-cell leukemia (BCL)-xL are antiapoptotic B-cell lymphoma 2 (Bcl-2) family proteins that block cell-intrinsic apoptosis through interactions on the mitochondrial outer membrane which contribute to therapeutic resistance.

View Article and Find Full Text PDF