Highly selective single and multiple deuteration of unactivated C(sp)-H bonds.

Nat Commun

State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.

Published: July 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Selective deuteration of unactivated C(sp)-H bonds is a highly attractive but challenging subject of research in pharmaceutical chemistry, material science and synthetic chemistry. Reported herein is a practical, highly selective and economical efficient hydrogen/deuterium (H/D) exchange of unactivated C(sp)-H bonds by synergistic photocatalysis and hydrogen atom transfer (HAT) catalysis. With the easily prepared PMP-substituted amides as nitrogen-centered radical precursors, a wide range of structurally diverse amides can undergo predictable radical H/D exchange smoothly with inexpensive DO as the sole deuterium source, giving rise to the distal tertiary, secondary and primary C(sp)-H bonds selectively deuterated products in yields of up to 99% and excellent D-incorporations. In addition to precise monodeuteration, this strategy can also achieve multideuteration of the substrates contain more than one remote C(sp)-H bond, which opens a method to address multi-functionalization of distal unactivated C(sp)-H bonds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307835PMC
http://dx.doi.org/10.1038/s41467-022-31956-3DOI Listing

Publication Analysis

Top Keywords

csp-h bonds
20
unactivated csp-h
16
highly selective
8
deuteration unactivated
8
h/d exchange
8
csp-h
6
bonds
5
selective single
4
single multiple
4
multiple deuteration
4

Similar Publications

Recent progress in the oxidative coupling of unactivated Csp-H bonds with other C-H bonds.

Chem Commun (Camb)

December 2021

Department of Chemistry, Fudan University, 2005 Songhu Rd, Shanghai, 200438, China.

Article Synopsis
  • - The article discusses the oxidative coupling of carbon-hydrogen (C-H) bonds as a simple and efficient way to create carbon-carbon (C-C) bonds from hydrocarbons without needing any prior modifications.
  • - It highlights recent advancements in coupling unactivated Csp-H bonds with various hybrid C-H bonds, including combinations with Csp-H bonds.
  • - The paper provides a summary of the types of substrates used, proposed reaction mechanisms, and potential applications, aiming to inspire new methods for building Csp-C bonds effectively.
View Article and Find Full Text PDF

Metal-Catalyzed Decarboxylative C-H Functionalization.

Chem Rev

July 2017

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou, Fujian 350002, China.

Article Synopsis
  • C-H bond activation and decarboxylation are important techniques in organic synthesis, leading to a new method called decarboxylative C-H bond functionalization.! -
  • This review highlights recent advancements in utilizing this method to synthesize various organic compounds, including styrenes, chalcones, and heterocycles.! -
  • The article discusses the effectiveness, limitations, and potential applications of decarboxylative functionalization across different types of C-H bonds.!
View Article and Find Full Text PDF

Transannular S···N interactions in 10-ethynyl-10H-phenothiazine 5-oxide and 5,5-dioxide.

Acta Crystallogr C

December 2013

Department of Material Science and Chemistry, Wakayama University, Sakaedani, Wakayama 640-8510, Japan.

The title compounds, C14H9NOS, (1), and C14H9NO2S, (2), are oxidation products of the parent compound 10-ethynyl-10H-phenothiazine. They differ with respect to transannular interactions, the intramolecular S···N contact being shorter in (2). Intermolecular Csp-H···O hydrogen bonds were detected in both crystals, and (1) was found to form stronger hydrogen bonds.

View Article and Find Full Text PDF

The direct enantiomeric resolution of non-K region trans-1,2-dihydrodiol, 1,2,3,4-tetrahydro-trans-1,2-diol, trans-3,4-dihydrodiol and 1,2,3,4-tetrahydro-trans-3,4-diol, K region trans- and cis-5,6-dihydrodiols and their monomethyl ethers of chrysene was studied by chiral stationary phase high-performance liquid chromatography (CSP-h.p.l.

View Article and Find Full Text PDF