98%
921
2 minutes
20
The emergence of SARS-CoV-2 variants with enhanced transmissibility, pathogenesis, and resistance to vaccines presents urgent challenges for curbing the COVID-19 pandemic. While Spike mutations that enhance virus infectivity or neutralizing antibody evasion may drive the emergence of these novel variants, studies documenting a critical role for interferon responses in the early control of SARS-CoV-2 infection, combined with the presence of viral genes that limit these responses, suggest that interferons may also influence SARS-CoV-2 evolution. Here, we compared the potency of 17 different human interferons against multiple viral lineages sampled during the course of the global outbreak, including ancestral and five major variants of concern that include the B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma), B.1.617.2 (delta), and B.1.1.529 (omicron) lineages. Our data reveal that relative to ancestral isolates, SARS-CoV-2 variants of concern exhibited increased interferon resistance, suggesting that evasion of innate immunity may be a significant, ongoing driving force for SARS-CoV-2 evolution. These findings have implications for the increased transmissibility and/or lethality of emerging variants and highlight the interferon subtypes that may be most successful in the treatment of early infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371743 | PMC |
http://dx.doi.org/10.1073/pnas.2203760119 | DOI Listing |
Phys Chem Chem Phys
September 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
The COVID-19 pandemic remains a global health crisis, with successive SARS-CoV-2 variants exhibiting enhanced transmissibility and immune evasion. Notably, the Omicron variant harbors extensive mutations in the spike protein's receptor-binding domain (RBD), altering viral fitness. While temperature is a critical environmental factor modulating viral stability and transmission, its molecular-level effects on variant-specific RBD-human angiotensin-converting enzyme 2 (hACE2) interactions remain underexplored.
View Article and Find Full Text PDFPLoS Pathog
September 2025
State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
Coronavirus, a large family of positive-sense RNA viruses, are responsible for both mild and severe respiratory illnesses, ranging from the common cold to life-threatening conditions. Despite significant advances in vaccine and antiviral development, the high mutability of human coronaviruses (HCoVs), such as SARS-CoV-2, presents a major challenge in treating these infections. Effective, broad-spectrum antiviral drugs are urgently needed to address both current and future HCoV outbreaks.
View Article and Find Full Text PDFVaccine
September 2025
Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh.
Despite the therapeutic potential of the primary vaccine series, a lack of confidence in the COVID-19 booster vaccine poses a threat to public health and undermines its coverage at the national, regional, and global levels. This study aimed to understand COVID-19 booster vaccine confidence (CBVC) among Bangladeshi adults aged 18-49 and the potential predictors of CBVC. In line with STROBE guidelines, a face-to-face cross-sectional survey was conducted from June 15 to August 31, 2023 during the spread of the SARS-CoV-2 Omicron variant.
View Article and Find Full Text PDFAnal Chem
September 2025
Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, Regensburg 93053, Germany.
The conjugation of proteins to the outer membranes of liposomes is a standard procedure used in bioanalytical and drug delivery approaches. Herein, we describe the development of a liposome-based surrogate assay for the quantification of SARS-CoV-2 neutralizing antibodies. Taking into consideration differences in amino acid sequences within the receptor-binding domain (RBD) of SARS-CoV-2 Spike proteins derived from five selected variants of concern (VoC), we studied the impact of coupling chemistries on physicochemical properties and antigenicity.
View Article and Find Full Text PDFFront Public Health
September 2025
Department of Family and Community Medicine, Penn State University College of Medicine, Hershey, PA, United States.
Background: The World Health Organization recommends at-home management of mild COVID-19. While our preliminary evaluation provided evidence for saline nasal irrigation (SNI) and gargling in COVID-19, an update and risk-benefit assessment for self-care in Omicron infection is warranted, from treatment and preparedness perspectives, as new SARS-CoV-2 variants continuously emerge, while symptoms overlap with those of common colds and other upper respiratory tract infections.
Methods: Systematic literature searches for preclinical and clinical studies involving Omicron infection and saline, bias assessment, and review of outcomes (benefits, risks).