Crystal structure of the phosphorylated MKK5 reveals activation mechanism of MAPK kinases.

Acta Biochim Biophys Sin (Shanghai)

Institute of Molecular Enzymology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China.

Published: August 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The mitogen-activated protein kinase (MAPK) signaling pathways are highly conserved in eukaryotes, regulating various cellular processes. The MAPK kinases (MKKs) are dual specificity kinases, serving as convergence and divergence points of the tripartite MAPK cascades. Here, we investigate the biochemical characteristics and three-dimensional structure of MKK5 in (AtMKK5). The recombinant full-length AtMKK5 is phosphorylated and can activate its physiological substrate AtMPK6. There is a conserved kinase interacting motif (KIM) at the N-terminus of AtMKK5, indispensable for specific recognition of AtMPK6. The kinase domain of AtMKK5 adopts active conformation, of which the extended activation segment is stabilized by the phosphorylated Ser221 and Thr215 residues. In line with sequence divergence from other MKKs, the αD and αK helices are missing in AtMKK5, suggesting that the AtMKK5 may adopt distinct modes of upstream kinase/substrate binding. Our data shed lights on the molecular mechanisms of MKK activation and substrate recognition, which may help design specific inhibitors targeting human and plant MKKs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909325PMC
http://dx.doi.org/10.3724/abbs.2022089DOI Listing

Publication Analysis

Top Keywords

mapk kinases
8
atmkk5
6
crystal structure
4
structure phosphorylated
4
phosphorylated mkk5
4
mkk5 reveals
4
reveals activation
4
activation mechanism
4
mapk
4
mechanism mapk
4

Similar Publications

Heart failure (HF) is a complex clinical syndrome marked by impaired contractility, adverse remodeling, and dysregulated intracellular signaling. Protein kinases are central regulators of cardiac function, modulating calcium handling, gene transcription, hypertrophy, and apoptosis through phosphorylation of target proteins. In HF, chronic activation of kinases such as protein kinase A, protein kinase C, calcium/calmodulin-dependent kinase II, mitogen-activated protein kinases, protein kinase B, and Rho-associated protein kinase contributes to progressive cardiac dysfunction.

View Article and Find Full Text PDF

Nanoscale organization of integrin-mediated receptor crosstalk is crucial for controlling cellular signaling in cancer biology. Previously, interactions between integrin αvβ6 and receptor tyrosine kinases (RTKs) have been implicated in cancer progression, but the spatial regulatory mechanisms remain undefined. Here, we developed a programmable DNA origami-based platform for nanoscale control of heteroligand multivalency and spacing, enabling systematic investigation of αvβ6-RTK interactions in cancer biology.

View Article and Find Full Text PDF

Galectin-10(Gal-10)/CLC(Charcot-Leyden crystal) has been discovered to be related to ECRSwNP characterized by high eosinophilic infiltration. We aimed to investigate the effects of Gal-10 on ECRSwNP. A total of 36 tissue samples were collected, including 11 ECRSwNP samples, 15 non-ECRSwNP samples, and 10 Control samples.

View Article and Find Full Text PDF

, a macrophage-residing parasite, expresses virulence factors that intercept macrophage signaling and inflicts leishmaniasis. Recently described virulence factors- eEF-1α (eukaryotic elongation factor), LmjF_36_3850 ( F_36_3850), LdTyrPIP_22 (LDBPK_220120.1) and LmjMAPK ( mitogen activated protein kinase)-4/12 selectively modulate the activities of kinases, phosphatases and metabolism of phosphatidylinositol influencing the infection outcome.

View Article and Find Full Text PDF

The stems of , an important vegetable in China, are targeted by the pathogen , triggering a response through the mitogen-activated protein kinase (MAPK) signalling pathway. To investigate the characteristics and the role of MAPK gene family in the biological stress response, a bioinformatics-based analysis was performed, and the expression patterns of and MAPK-infection pathway-related genes were detected in male plants inoculated with . Twenty-five were identified and divided into four subgroups A, B, C and D: carried a conserved TEY motif, while D had a conserved TDY motif.

View Article and Find Full Text PDF