98%
921
2 minutes
20
Due to the continuously mutating nature of the H3N2 virus, two aspects were considered when preparing the H3N2 microneedle vaccines: (1) rapid preparation and (2) cross-protection against multiple antigenic variants. Previous methods of measuring hemagglutinin (HA) content required the standard antibody, thus rapid preparation of H3N2 microneedle vaccines targeting the mutant H3N2 was delayed as a result of lacking a standard antibody. In this study, H3N2 microneedle vaccines were prepared by high performance liquid chromatography (HPLC) without the use of an antibody, and the cross-protection of the vaccines against several antigenic variants was observed. The HA content measured by HPLC was compared with that measured by ELISA to observe the accuracy of the HPLC analysis of HA content. The cross-protection afforded by the H3N2 microneedle vaccines was evaluated against several antigenic variants in mice. Microneedle vaccines for the 2019-20 seasonal H3N2 influenza virus (19-20 A/KS/17) were prepared using a dip-coating process. The cross-protection of 19-20 A/KS/17 H3N2 microneedle vaccines against the 2015-16 seasonal H3N2 influenza virus in mice was investigated by monitoring body weight changes and survival rate. The neutralizing antibody against several H3N2 antigenic variants was evaluated using the plaque reduction neutralization test (PRNT). HA content in the solid microneedle vaccine formulation with trehalose post-exposure at 40℃ for 24 h was 48% and 43% from the initial HA content by HPLC and ELISA, respectively. The vaccine was administered to two groups of mice, one by microneedles and the other by intramuscular injection (IM). In vivo efficacies in the two groups were found to be similar, and cross-protection efficacy was also similar in both groups. HPLC exhibited good diagnostic performance with H3N2 microneedle vaccines and good agreement with ELISA. The H3N2 microneedle vaccines elicited a cross-protective immune response against the H3N2 antigenic variants. Here, we propose the use of HPLC for a more rapid approach in preparing H3N2 microneedle vaccines targeting H3N2 virus variants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287697 | PMC |
http://dx.doi.org/10.1038/s41598-022-16365-2 | DOI Listing |
Pharm Res
September 2025
Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam, Gyeonggi-Do, 13120, Republic of Korea.
Purpose: Adjuvants are critical for enhancing immune responses to recombinant protein-based vaccines, which typically exhibit weak immunogenicity. Microneedle array patches (MAPs) offer a promising method for intradermal delivery, but conventional Co-Delivery MAPs (containing antigen and adjuvant together) have limited loading capacity and potential undesirable interactions. Adjuvants may also trigger adverse reactions in sensitive populations.
View Article and Find Full Text PDFImmunology
September 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China.
Traditional DNA vaccines, typically administered via intramuscular injection with electroporation (IM-E), often cause discomfort and require trained personnel. Addressing these challenges, we developed multivalent DNA vaccines targeting both intracellular mature virion (IMV) and extracellular enveloped virion (EEV) proteins of the monkeypox virus (MPXV), designated as M2 (A29L, B6R), M3 (A29L, B6R, M1R) and M4 (A29L, B6R, M1R, A35R). These vaccine constructs were formulated into dissolvable microneedle array patches (D-MAPs) for intradermal delivery.
View Article and Find Full Text PDFBiotherapy offers a promising approach for treating a variety of diseases. However, the lack of advanced delivery systems remains a significant barrier to improve the efficacy, safety, and cost-effectiveness of biotherapeutics. The microneedle, as a minimally invasive drug delivery tool, has demonstrated considerable potential in biotherapeutic applications.
View Article and Find Full Text PDFVaccine
August 2025
Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey; Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey. Electronic address:
Microneedle (MNs)-based vaccine systems have emerged as a groundbreaking innovation in healthcare, presenting an alternative to conventional vaccine delivery approaches. This study provides an extensive review of the role of MNs in enhancing modern healthcare through improved vaccine delivery strategies, emphasizing advances, advantages, and challenges associated with the integration of MNs and vaccine development technologies. MN-based systems offer a novel approach for vaccine delivery that is associated with an enhanced immunogenic response, and improved vaccine formulation stability.
View Article and Find Full Text PDFEur J Pharm Biopharm
October 2025
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA. Electronic address:
Messenger RNA (mRNA) encapsulated in lipid nanoparticles (LNPs) is a potent technology with broad applications. Microneedle patches (MNPs) can enhance the accessibility of mRNA-LNPs for vaccination or therapeutic applications. We evaluated the effects of LNP composition on the stability of mRNA-LNPs before and after MNP manufacturing, as assessed by changes in mRNA-LNP size, encapsulation efficiency, and protein expression in vitro and in vivo.
View Article and Find Full Text PDF