98%
921
2 minutes
20
Alkalinity production is one of the most typical and widespread salinization hazards on the Loess Plateau. Based on the characterization of typical flooding sites and the results of salt monitoring, this study investigates the deterioration mechanism of salinization on Zhouqiao site. The orthogonal test was used to simulate the effects of different concentrations of MgSO, NaCl and CaCl under natural conditions on the quality change, salt analysis out location, surface phenomenon, strength and electrical conductivity of the soil at the Zhouqiao site, and to make a preliminary analysis on the mechanism of saline deterioration of the site soil. The results show that the soil column mass increased significantly under the action of salt, and the rate of salt absorption in the soil column decreased when the critical value was reached, and the critical values were different under the action of different kinds of salts. The rate of salt analysis is also influenced by the salt concentration and the number of cycles, which gradually increases with the increase of salt concentration and the number of cycles. The nominal strength of the soil column with the number of cycles, but occasionally increases. The conductivity increases with the number of cycles, and the magnitude distribution of the conductivity of the soil column under the action of different salts is not exactly the same.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9262974 | PMC |
http://dx.doi.org/10.1038/s41598-022-15802-6 | DOI Listing |
Beilstein J Nanotechnol
August 2025
Faculty of Engineering and Technology, Saigon University, 273 An Duong Vuong Street, Cho Quan Ward, Ho Chi Minh City 700000, Vietnam.
This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Department of Environmental & Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, United States. Electronic address:
This study examined the behavior of six U.S. Environmental Protection Agency (EPA) regulated per- and polyfluoroalkyl substances (PFAS) compounds in vegetated soils amended with Class A and Class B biosolids.
View Article and Find Full Text PDFEnviron Pollut
September 2025
Universidad de Jaén, Analytical Chemistry Research Group (FQM 323), Departamento de Química Física y Analítica, Campus Las Lagunillas Edif. B3, 23071, Jaén, Spain; University Research Institute for Olives Grove and Olive Oil (INUO), Universidad de Jaén, Jaén, Spain.
Glyphosate (GLY) is the most widely used herbicide globally. Despite concerns regarding its potential adverse effects on human health and the environment, its use continues to grow each year. Following application, a substantial proportion of GLY infiltrates the soil, where it can degrade into transformation products such as aminomethylphosphonic acid (AMPA), which is much more persistent than the parent compound.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China; Sichuan Engineering Research Center for Pollution Control in Rail Transit Engineering, Chengdu, Sichuan 611756, China; Sichuan International Science and Technology Cooperation base for Int
In alpine meadow regions, macropore flow is a critical but inadequately understood pathway for antibiotic transport. The complex relationship between macropore structure, flow dynamics, and solute properties presents a significant research gap. Methodological limitations hinder the accurate characterization of solute migration mechanisms due to complex macropore structures.
View Article and Find Full Text PDFUltrason Sonochem
September 2025
College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China. Electronic address:
Addressing the issues of slow decomposition and low nutrient release efficiency associated with traditional straw returning, this study innovatively applied ultrasound-assisted centrifugal separation technology to prepare submicron/nano-straw particles and systematically conducted a multi-scale investigation from microscopic to macroscopic levels. The core finding reveals that when the particle size reaches the 1 μm threshold, ultrasonic cavitation vigorously disrupts the straw structure, leading to efficient lignin removal (77.45 %) and a significant reduction in cellulose crystallinity, thereby fundamentally enhancing the degradation rate.
View Article and Find Full Text PDF