Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cholesterol, as an indispensable nutrient, regulates molting and growth in crustacean. As crustaceans are unable to biosynthesize cholesterol de novo, it is central to understand how dietary cholesterol affects molting in crustaceans. An 8-week feeding trial was conducted to evaluate the effects of dietary cholesterol level (0.12%, 0.43%, 0.79%, 1.00%, 1.30% and 2.50%) on growth, cholesterol metabolism and expression of genes related to lipid and ecdysone metabolism in female swimming crabs (). A total of 192 crabs (1.41 ± 0.05 g) were randomly distributed into 192 aquaria. Each treatment had 4 replicates with each replicate containing 8 crabs. Crabs fed the 1.00% cholesterol diet showed best growth performance, and thus based on percent weight gain, the optimal dietary cholesterol requirement was calculated at 1.01%. Tissue cholesterol concentrations were positively correlated with dietary cholesterol level. The contents of functional fatty acids in hepatopancreas significantly increased as dietary cholesterol increased from 0.12% to 2.50% ( < 0.05). The expression levels of genes related to lipogenesis pathway, lipid catabolism and fatty acid oxidation were significantly down-regulated with increased dietary cholesterol level ( < 0.05). The highest expression levels of cholesterol transport genes, low-density lipoprotein receptor () and low-density lipoprotein receptor-related protein 2 () occurred in crabs fed the 1.30% cholesterol diet. Moreover, hormones related to molting such as crustacean hyperglycemic hormone (CHH), methyl farnesoate (MF), molt-inhibiting hormone (MIH), and ecdysone in hemolymph were significantly influenced by dietary cholesterol level ( < 0.05). The highest expression levels of ecdysone receptor () and chitinase 1 () in eyestalk and hepatopancreas were found in crabs fed the diet containing 1.00% cholesterol ( < 0.05). In conclusion, the optimal dietary level was beneficial to functional fatty acid accumulation, regulated lipid metabolism, promoted the ecdysone signalling pathway by improving the cholesterol transport, and improved the molting rate and growth of swimming crabs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9234081PMC
http://dx.doi.org/10.1016/j.aninu.2022.05.001DOI Listing

Publication Analysis

Top Keywords

dietary cholesterol
24
cholesterol
11
swimming crabs
8
cholesterol level
8
dietary
6
crabs
5
cholesterol promotes
4
growth
4
promotes growth
4
growth ecdysone
4

Similar Publications

Background And Aim: The search for sustainable and cost-effective protein alternatives to soybean meal in livestock diets has led to the exploration of legumes such as faba beans [FBs] ( L.). This study investigated the effects of dietary inclusion of FBs on carcass traits, meat quality, and selected blood parameters in Awassi lambs.

View Article and Find Full Text PDF

Metabolic consequences and gut microbiome alterations in rats consuming pork or a plant-based meat analogue.

Food Funct

September 2025

Laboratory for Animal Nutrition and Animal Product Quality (LANUPRO), Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.

It is unknown how human health is affected by the current increased consumption of ultra-processed plant-based meat analogues (PBMA). In the present study, rats were fed an experimental diet based on pork or a commercial PBMA, matched for protein, fat, and carbohydrate content for three weeks. Rats on the PBMA diet exhibited metabolic changes indicative of lower protein digestibility and/or dietary amino acid imbalance, alongside increased mesenteric (+38%) and retroperitoneal (+20%) fat depositions despite lower food and energy intake.

View Article and Find Full Text PDF

An 8-week feeding trial was conducted to assess the effects of hydrolyzed feather meal (HFM) as a fish meal replacement on the growth performance, flesh quality, skin color, and intestinal microbiota of yellow catfish (). Five isonitrogen (44% crude protein) and isolipidic (8.5% crude lipid) diets were formulated with varying levels of HFM at 0% (FM, control), 2.

View Article and Find Full Text PDF

Epigenetic Age Acceleration and Cardiometabolic Biomarkers in Response to Weight-Loss Dietary Interventions Among Obese Individuals: The MACRO Trial.

Aging Cell

September 2025

Department of Epidemiology, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA.

Epigenetic clocks have emerged as promising biomarkers of aging, but their responsiveness to lifestyle interventions and relevance for short-term changes in cardiometabolic health remain uncertain. In this study, we examined the associations between three epigenetic aging measures (DunedinPACE, PCPhenoAge acceleration, and PCGrimAge acceleration) and a broad panel of cardiometabolic biomarkers in 144 obese participants from the MACRO trial, a 12-month weight-loss dietary intervention comparing low-carbohydrate and low-fat diets. At pre-intervention baseline, DunedinPACE was significantly associated with several cardiometabolic biomarkers (FDR [false discovery rate] < 0.

View Article and Find Full Text PDF

NT-proBNP levels increase exponentially with age and are associated with cardiovascular and all-cause mortality. From NT-proBNP concentration a surrogate for biological age ("proBNPage") can be obtained. The primary objective of this study was to define a method to design future trials on anti-aging treatments using proBNPage.

View Article and Find Full Text PDF