Large dynamic range, high resolution optical heterodyne readout for high velocity slip events.

Rev Sci Instrum

ARC Centre of Excellence for Gravitational Wave Discovery, Centre for Gravitational Astrophysics, Research School of Physics, and of Astronomy and Astrophysics, The Australian National University, Canberra, Acton 2601, Australia.

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present a free-space optical displacement sensor for measuring geological slip event displacements within a laboratory setting. This sensor utilizes a fiberized Mach-Zehnder based optical heterodyne system coupled with a digital phase lock loop, providing a large dynamic range (multiple centimeters), high displacement resolution (with an amplitude spectral density of <10 m/Hz for frequencies above 100 Hz), and high velocity tracking capabilities (up to 4.96 m/s). This displacement sensor is used to increase the displacement and the time sensitivity for measuring laboratory-scale earthquakes induced in geological samples by using a triaxial compression apparatus. The sensor architecture provides an improved displacement and time resolution for the millisecond-duration slip events, at high containment and loading pressure and high temperatures. Alternatively, the sensor implementation can be used for other non-contact displacement readouts that required high velocity tracking with low noise and large dynamic range sensing. We use 13 high-velocity slip events in Fontainebleau sandstone to show the large dynamic range displacement tracking ability and displacement amplitude spectral densities to demonstrate the optical readout's unique sensing capabilities.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0082970DOI Listing

Publication Analysis

Top Keywords

large dynamic
8
dynamic range
8
optical heterodyne
8
range high
4
high resolution
4
resolution optical
4
heterodyne readout
4
readout high
4
high velocity
4
velocity slip
4

Similar Publications

Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.

View Article and Find Full Text PDF

Background: Although current evidence supports the effectiveness of social norm feedback (SNF) interventions, their sustained integration into primary care remains limited. Drawing on the elements of the antimicrobial SNF intervention strategy identified through the Delphi-based evidence applicability evaluation, this study aims to explore the barriers and facilitators to its implementation in primary care institutions, thereby informing future optimization.

Methods: Based on the five domains of the Consolidated Framework for Implementation Research (CFIR), we developed semi-structured interview and focus group discussion guides.

View Article and Find Full Text PDF

Optimized FDA Blood Pump: A Case Study in System-Level Customized Ventricular Assist Device Designs.

Ann Biomed Eng

September 2025

Department of Mechanical Engineering, Koc University, Rumeli Feneri Campus, Sarıyer, 34450, Istanbul, Turkey.

Purpose: The design and development of ventricular assist devices have heavily relied on computational tools, particularly computational fluid dynamics (CFD), since the early 2000s. However, traditional CFD-based optimization requires costly trial-and-error approaches involving multiple design cycles. This study aims to propose a more efficient VAD design and optimization framework that overcomes these limitations.

View Article and Find Full Text PDF

The transition from traditional animal-based approaches and assessments to New Approach Methodologies (NAMs) marks a scientific revolution in regulatory toxicology, with the potential of enhancing human and environmental protection. However, implementing the effective use of NAMs in regulatory toxicology has proven to be challenging, and so far, efforts to facilitate this change frequently focus on singular technical, psychological or economic inhibitors. This article takes a system-thinking approach to these challenges, a holistic framework for describing interactive relationships between the components of a system of interest.

View Article and Find Full Text PDF

Introduction: Benchtop and animal models have traditionally been used to study the propagation of Onyx Liquid Embolic Systems (Onyx) used in the treatment of brain arteriovenous malformations (AVM). However, such models are costly, do not provide sufficient detail to elucidate how variations in Onyx viscosity alter flow dynamics, and rely on some trial-and-error, resulting in elongated timelines for product development.

Objectives: The goal of this study was to leverage Computational Fluid Dynamics (CFD) simulations to predict the behavior of different Onyx formulations.

View Article and Find Full Text PDF