98%
921
2 minutes
20
Purpose: The design and development of ventricular assist devices have heavily relied on computational tools, particularly computational fluid dynamics (CFD), since the early 2000s. However, traditional CFD-based optimization requires costly trial-and-error approaches involving multiple design cycles. This study aims to propose a more efficient VAD design and optimization framework that overcomes these limitations.
Methods: We developed a system- and component-level ventricle assist device optimization approach by coupling a lumped parameter cardiovascular physiology model with parametric turbomachinery, volute design, and blade path generation packages. The framework incorporates pump hydrodynamic losses and is validated against experimental data from six distinct blood pump designs and CFD simulations. The optimization framework allows for the specification of both physiology-related and device-related objective functions to generate optimized blood pump configurations over a large parameter space.
Results: The optimization was applied to the U.S. Food and Drug Administration (FDA) benchmark blood pump as the baseline design. Results showed that an optimized FDA pump, maintaining the same cardiac output and aortic pressure, achieved a ~ 32% reduction in blade tip velocity compared to the baseline, resulting in an ~ 88% reduction in hemolysis. Additionally, an alternative design with a 40% reduction in blood-wetted area was generated while preserving the baseline pressure and flow.
Conclusion: The proposed optimization framework improves device development efficiency by shortening the design cycle and enabling hydrodynamically optimized pumps that perform well across diverse patient hemodynamics. The optimized pump designs are available as open-source resources for further research and development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10439-025-03834-8 | DOI Listing |
Ann Biomed Eng
September 2025
Department of Mechanical Engineering, Koc University, Rumeli Feneri Campus, Sarıyer, 34450, Istanbul, Turkey.
Purpose: The design and development of ventricular assist devices have heavily relied on computational tools, particularly computational fluid dynamics (CFD), since the early 2000s. However, traditional CFD-based optimization requires costly trial-and-error approaches involving multiple design cycles. This study aims to propose a more efficient VAD design and optimization framework that overcomes these limitations.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
September 2025
Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy but are increasingly linked to immune-related kidney injury (irKI). This study presents the first bibliometric analysis of irKI research (2000-2025), aiming to identify key trends, mechanistic insights, and pharmacological risk factors. We analyzed 2,179 publications to understand the evolution of irKI research, focusing on areas like T cell-mediated tubular injury, immune system-driven inflammation, and changes in metabolism.
View Article and Find Full Text PDFG Ital Nefrol
August 2025
Infermiere Professionale SSD Nefrologia e Dialisi P.O. Soverato, ASP CZ.
Management of diabetes mellitus in hemodialysis is highly complex due to increased glycemic variability and hypoglycemic risk. The use of technologies applied to diabetes has been shown to improve glycemic control, however data in dialysis patients are limited. To describe the efficacy and safety of the minimed 780G AHCL system in a stable hemodialysis patient and during hospitalization in the Intensive Care Unit (ICU).
View Article and Find Full Text PDFACS Infect Dis
September 2025
Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States.
Malaria treatments are compromised by drug resistance, creating an urgent need to discover new drugs. We used a phenotypic high-throughput screening (HTS) platform to identify new antimalarials, uncovering three related pyrrole-, indole-, and indoline-based series with a shared α-azacyclic acetamide core. These compounds showed fast-killing activity on asexual blood-stage parasites, were not cytotoxic, and disrupted parasite intracellular pH and Na regulation similarly to cipargamin (KAE609), a clinically advanced inhibitor of the Na pump (ATP4).
View Article and Find Full Text PDFScience
September 2025
Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
Ventricular tachycardia disrupts the heart's coordinated pump function, leading to sudden cardiac death. Neutrophils, which are recruited in high numbers to the ischemic myocardium, promote these arrhythmias. Comparing neutrophils with macrophages, we found that resistin-like molecule γ ( or RELMγ) was the most differentially expressed gene in mouse infarcts.
View Article and Find Full Text PDF