Publications by authors named "Daniel A Shaddock"

Low power optical phase tracking is an enabling capability for intersatellite laser interferometry, as minimum trackable power places significant constraints on mission design. Through the combination of laser stabilization and control-loop parameter optimization, we have demonstrated continuous tracking of a subfemtowatt optical field with a mean time between slips of more than 1000 s. Comparison with analytical models and numerical simulations verified that the observed experimental performance was limited by photon shot noise and unsuppressed laser frequency fluctuations.

View Article and Find Full Text PDF

We found a calculation error affecting the scaling of results presented in Figure 7 of our article "Absolute frequency readout derived from ULE cavity for next generation geodesy missions" [Opt. Express2926014 (2021)10.1364/OE.

View Article and Find Full Text PDF

We present a free-space optical displacement sensor for measuring geological slip event displacements within a laboratory setting. This sensor utilizes a fiberized Mach-Zehnder based optical heterodyne system coupled with a digital phase lock loop, providing a large dynamic range (multiple centimeters), high displacement resolution (with an amplitude spectral density of <10 m/Hz for frequencies above 100 Hz), and high velocity tracking capabilities (up to 4.96 m/s).

View Article and Find Full Text PDF

We demonstrate digitally enhanced interferometry with better than 100 dB mean cross-talk suppression with Golay complementary pairs using a combination of numerical simulations and experiments. These results exceed previously reported cross-talk suppression using conventional maximal length sequences by more than 48 dB.

View Article and Find Full Text PDF

The next generation of Gravity Recovery and Climate Experiment (GRACE)-like dual-satellite geodesy missions proposals will rely on inter-spacecraft laser interferometry as the primary instrument to recover geodesy signals. Laser frequency stability is one of the main limits of this measurement and is important at two distinct timescales: short timescales over 10-1000 seconds to measure the local gravity below the satellites, and at the month to year timescales, where the subsequent gravity measurements are compared to indicate loss or gain of mass (or water and ice) over that period. This paper demonstrates a simple phase modulation scheme to directly measure laser frequency change over long timescales by comparing an on-board Ultra-Stable Oscillator (USO) clocked frequency reference to the Free Spectral Range (FSR) of the on-board optical cavity.

View Article and Find Full Text PDF

This paper describes, to our knowledge, the first demonstration of high performance tilt locking, a method of stabilizing laser frequency to an optical reference cavity using a spatial-mode readout technique. The experiment utilized a traveling wave cavity with a finesse of approximately 10,000, housed in a thermally controlled vacuum chamber. The tilt locking method in a double pass configuration has promising performance in the 100 µHz-1 Hz band, including surpassing the Gravity Recovery and Climate Experiment (GRACE) Follow-On laser ranging interferometer requirement.

View Article and Find Full Text PDF

We present a detailed analysis of techniques to mitigate the effects of phase noise and Doppler-induced frequency offsets in coherent random amplitude modulated continuous-wave (RAMCW) LiDAR. The analysis focuses specifically on a technique which uses coherent dual-quadrature detection to enable a sum of squares calculation to remove the input signal's dependence on carrier phase and frequency. This increases the correlation bandwidth of the matched-template filter to the bandwidth of the acquisition system, whilst also supporting the simultaneous measurement of relative radial velocity with unambiguous direction-of-travel.

View Article and Find Full Text PDF

Optical phased arrays (OPAs) are devices that use the coherence of light to control the interference pattern in the far field, which enables them to steer a laser beam with no moving parts. As such, OPAs have potential applications in laser communications, target acquisition and tracking, metrology, and directed energy. In this Letter, we present a control architecture for an actively phase-locked OPA, capable of steering a laser beam at speeds limited by the actuation bandwidth of electro-optic modulators.

View Article and Find Full Text PDF

Digitally enhanced heterodyne interferometry (DEHI) combines the sub-wavelength displacement measurements of conventional laser interferometry with the multiplexing capabilities of spread-spectrum modulation techniques to discriminate between multiple electric fields at a single photodetector. Technologies that benefit from DEHI include optical phased arrays, which require the simultaneous phase measurement of a large number of electric fields. A consequence of measuring the phase of multiple electric fields is the introduction of crosstalk, which can degrade measurement precision.

View Article and Find Full Text PDF

We present the generation and detection of squeezed light in the 2  μm wavelength region. This experiment is a crucial step in realizing the quantum noise reduction techniques that will be required for future generations of gravitational-wave detectors. Squeezed vacuum is generated via degenerate optical parametric oscillation from a periodically poled potassium titanyl phosphate crystal, in a dual resonant cavity.

View Article and Find Full Text PDF

We present a new technique for the fine alignment sensing of optical interferometers. Unlike conventional wavefront sensing systems, which use multielement photodiodes, this approach works with a single-element photodiode, in combination with a spatial light modulator (SLM) and digitally enhanced heterodyne interferometry. As all signals pass through a single photodetection and analog path, the technique exhibits high common-mode rejection to low frequency errors present in conventional systems.

View Article and Find Full Text PDF

The technical embodiment of the Huygens-Fresnel principle, an optical phased array (OPA) is an arrangement of optical emitters with relative phases controlled to create a desired beam profile after propagation. One important application of an OPA is coherent beam combining (CBC), which can be used to create beams of higher power than is possible with a single laser source, especially for narrow linewidth sources. Here we present an all-fiber architecture that stabilizes the relative output phase by inferring the relative path length differences between lasers using the small fraction of light that is back-reflected into the fiber at the OPA's glass-air interface, without the need for any external sampling optics.

View Article and Find Full Text PDF

This experiment uses digital interferometry to reduce polarisation noise from a fiber interferometer to the level of double Rayleigh backscatter making precision fiber metrology systems robust for remote field applications. This is achieved with a measurement of the Jones matrix with interferometric sensitivity in real time, limited only by fibre length and processing bandwidth. This new approach leads to potentially new metrology applications and the ability to do ellipsometry without polarisation elements in the output field.

View Article and Find Full Text PDF

We configure an all-fiber digital interferometer to eliminate both code noise and Rayleigh backscatter noise from bidirectional measurements. We utilize a sawtooth phase ramp to upconvert code noise beyond our signal bandwidth, demonstrating an in-band noise reduction of approximately two orders of magnitude. In addition, we demonstrate, for the first time to our knowledge, the use of relative code delays within a digital-interferometer system to eliminate Rayleigh-backscatter noise, resulting in a noise reduction of a factor of 50.

View Article and Find Full Text PDF

Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications.

View Article and Find Full Text PDF

The Gravity Recovery and Climate Experiment Follow-On mission will use a phase-locked loop to track changes in the phase of an optical signal that has been transmitted hundreds of kilometers between two spacecraft. Beam diffraction significantly reduces the received signal power, making it difficult to track, as the phase-locked loop is more susceptible to cycle slips. The lowest reported weak-light phase locking is at 40 fW with a cycle slip rate of 1 cycle per second.

View Article and Find Full Text PDF

Coherent combination of multiple lasers using an optical phased array (OPA) is an effective way to scale optical intensity in the far field beyond the capabilities of single fiber lasers. Using an actively phase locked, internally sensed, 2D OPA we demonstrate over 95% fringe visibility of the interfered beam, λ/120 RMS output phase stability over a 5 Hz bandwidth, and quadratic scaling of intensity in the far field using three emitters. This paper presents a new internally sensed OPA architecture that employs a modified version of digitally enhanced heterodyne interferometry (DEHI) based on code division multiplexing to measure and control the phase of each emitter.

View Article and Find Full Text PDF

Digitally enhanced homodyne interferometry enables robust interferometric sensitivity to be achieved in an optically simple configuration by shifting optical complexity into the digital signal processing regime. We use digitally enhanced homodyne interferometry in a simple, all-fiber Michelson interferometer to achieve a frequency reference stability of better than 20 Hz/√Hz from 10 mHz to 1 Hz, satisfying, for the first time in an all fiber system, the stability requirements for the Gravity Recovery and Climate Experiment Follow On mission. In addition, we have demonstrated stability that satisfies the future mission objectives at frequencies down to 1 mHz.

View Article and Find Full Text PDF

We experimentally demonstrate an inter-satellite laser link acquisition scheme for GRACE Follow-On. In this strategy, dedicated acquisition sensors are not required-instead we use the photodetectors and signal processing hardware already required for science operation. To establish the laser link, a search over five degrees of freedom must be conducted (± 3 mrad in pitch/yaw for each laser beam, and ± 1 GHz for the frequency difference between the two lasers).

View Article and Find Full Text PDF

The GRACE Follow-On mission will monitor fluctuations in Earth's geoid using, for the first time, a Laser Ranging Interferometer to measure intersatellite distance changes. We have investigated the coupling between spacecraft rotation and the intersatellite range measurement that is incurred due to manufacturing and assembly tolerances of the Triple Mirror Assembly (TMA), a precision retroreflector to ensure alignment between in- and outgoing laser beams. The three TMA mirror planes intersect in a virtual vertex to which satellite displacements are referenced.

View Article and Find Full Text PDF

A method based on phase-shifting Fizeau interferometry is presented with which retroreflectors with large incoming-outgoing beam separations can be tested. The method relies on a flat Reference Bar that is used to align two auxiliary mirrors parallel to each other to extend the aperture of the interferometer. The method is applied to measure the beam coalignment of a prototype Triple Mirror Assembly of the GRACE Follow-On Laser Ranging Interferometer, a future satellite-to-satellite tracking device for Earth gravimetry.

View Article and Find Full Text PDF

We use digitally enhanced heterodyne interferometry to measure the stability of optical fiber laser frequency references. Suppression of laser frequency noise by over four orders of magnitude is achieved using post processing time delay interferometry, allowing us to measure the mechanical stability for frequencies as low as 100 μHz. The performance of the digitally enhanced heterodyne interferometer platform used here is not practically limited by the dynamic range or bandwidth issues that can occur in feedback stabilization systems.

View Article and Find Full Text PDF

We present a technique for frequency shifting scattering induced noise on squeezed light beams, providing immunity from scattered light while preserving the squeezed states. Using a 500 Hz pre and postsqueezing apparatus path length modulation, we show up to a 20 dB reduction in scattering induced noise while recovering squeezing measurement below the shot noise level. Such a technique offers immunity to spurious scattering sources without the need for optically lossy isolation optics.

View Article and Find Full Text PDF

Extending phased array techniques to optical frequencies is challenging because of the considerably smaller wavelengths and the difficulty of stabilizing the optical path lengths of multiple emitters to this level of precision. This is especially true under real-world conditions where thermal and vibrational disturbances cause path length variations that are considerable in relation to the wavelength. Earlier attempts have relied on an external mechanism to sense and compensate for any unwanted variations in the outgoing beams.

View Article and Find Full Text PDF

We present measurement results for a laser frequency reference, implemented with an all-optical fiber Michelson interferometer, down to frequencies as low as 1 mHz. Optical fiber is attractive for space-based operations as it is physically robust, small and lightweight. The small free spectral range of fiber interferometers also provides the possibility to prestabilize two lasers on two distant spacecraft and ensures that the beatnote remains within the detector bandwidth.

View Article and Find Full Text PDF