VAP Proteins - From Organelle Tethers to Pathogenic Host Interactors and Their Role in Neuronal Disease.

Front Cell Dev Biol

College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, United Kingdom.

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Vesicle-associated membrane protein (VAMP)-associated proteins (VAPs) are ubiquitous ER-resident tail-anchored membrane proteins in eukaryotic cells. Their N-terminal major sperm protein (MSP) domain faces the cytosol and allows them to interact with a wide variety of cellular proteins. Therefore, VAP proteins are vital to many cellular processes, including organelle membrane tethering, lipid transfer, autophagy, ion homeostasis and viral defence. Here, we provide a timely overview of the increasing number of VAPA/B binding partners and discuss the role of VAPA/B in maintaining organelle-ER interactions and cooperation. Furthermore, we address how viruses and intracellular bacteria hijack VAPs and their binding partners to induce interactions between the host ER and pathogen-containing compartments and support pathogen replication. Finally, we focus on the role of VAP in human disease and discuss how mutated VAPB leads to the disruption of cellular homeostasis and causes amyotrophic lateral sclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213790PMC
http://dx.doi.org/10.3389/fcell.2022.895856DOI Listing

Publication Analysis

Top Keywords

vap proteins
8
binding partners
8
proteins organelle
4
organelle tethers
4
tethers pathogenic
4
pathogenic host
4
host interactors
4
interactors role
4
role neuronal
4
neuronal disease
4

Similar Publications

The present study was undertaken to assess the effect of kisspeptin supplementation (0.0, 5.0, 10.

View Article and Find Full Text PDF

Background: We investigated circulating protein profiles and molecular pathways among various chronic kidney disease (CKD) etiologies to study its underlying molecular heterogeneity.

Methods: We conducted a proteomic biomarker analysis in the DAPA-CKD trial recruiting adults with and without type 2 diabetes with an eGFR of 25 to 75 mL/min/1.73m2 and a UACR of 200 to 5000 mg/g.

View Article and Find Full Text PDF

Voltage-gated K channels of the Kv2 family coassemble with electrically silent KvS subunits in specific subpopulations of brain neurons, forming heteromeric Kv2/KvS channels with distinct functional properties. Little is known about the composition and function of Kv2 channels in spinal cord neurons, however. Here, we show that while Kv2.

View Article and Find Full Text PDF

Many Gram-negative bacterial pathogens deploy type III effector proteins (T3Es) to manipulate host cellular processes and suppress immune responses. Increasing evidence suggests that certain T3Es mimic eukaryotic FFAT (two phenylalanines in an acidic tract) motifs, enabling interaction with vesicle-associated membrane protein (VAMP)-associated proteins (VAPs). These interactions likely help pathogens target and exploit host membrane contact sites.

View Article and Find Full Text PDF

Microbial whole-cell biosensors (MWCBs) harness living cells to detect analytes and produce measurable outputs, enabling continuous, low-cost, and in situ sensing. Central to MWCB function are modular sensing architectures, which can be reprogrammed to respond to diverse signals. Particularly, two-component systems (TCSs) and allosteric transcription factors (aTFs) offer modular, engineerable frameworks for building chimeric proteins.

View Article and Find Full Text PDF