Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pesticides play an important role in agricultural development. However, pesticide application can result in both acute and chronic human toxicities, and the adverse effects of pesticides on the environment and human health remain a serious problem. There is therefore a need to discuss the application methods for pesticides, the routes of pesticide exposure, and the health risks posed by pesticide application. The health problems related to pesticide application and exposure in developing countries are of particular concern. The purpose of this paper is to provide scientific information for policymakers in order to allow the development of proper pesticide application technics and methods to minimize pesticide exposure and the adverse health effects on both applicators and communities. Studies indicate that there are four main pesticide application methods, including hydraulic spraying, backpack spraying, basal trunk spraying, and aerial spraying. Pesticide application methods are mainly selected by considering the habits of target pests, the characteristics of target sites, and the properties of pesticides. Humans are directly exposed to pesticides in occupational, agricultural, and household activities and are indirectly exposed to pesticides via environmental media, including air, water, soil, and food. Human exposure to pesticides occurs mainly through dermal, oral, and respiratory routes. People who are directly and/or indirectly exposed to pesticides may contract acute toxicity effects and chronic diseases. Although no segment of the general population is completely protected against exposure to pesticides and their potentially serious health effects, a disproportionate burden is shouldered by people in developing countries. Both deterministic and probabilistic human health risk assessments have their advantages and disadvantages and both types of methods should be comprehensively implemented in research on exposure and human health risk assessment. Equipment for appropriate pesticide application is important for application efficiency to minimize the loss of spray solution as well as reduce pesticide residuals in the environment and adverse human health effects due to over-spraying and residues. Policymakers should implement various useful measures, such as integrated pest management (IPM) laws that prohibit the use of pesticides with high risks and the development of a national implementation plan (NIP) to reduce the adverse effects of pesticides on the environment and on human health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231402PMC
http://dx.doi.org/10.3390/toxics10060335DOI Listing

Publication Analysis

Top Keywords

pesticide application
32
human health
20
application methods
12
health effects
12
exposed pesticides
12
pesticide
11
pesticides
11
health
10
application
10
health risks
8

Similar Publications

Bridging Planarian Bioassays and AOP-Based Environmental Assessment: Toward Mechanistic Insights into Pollutant-Induced Disruptions.

Environ Res

September 2025

School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom. Electronic address:

Human activities have introduced a wide range of contaminants into aquatic ecosystems, posing substantial ecological and health risks. Robust bioindicators are essential for accurately predicting these impacts. Since the early 1980s, planarians-freshwater flatworms known for their remarkable regenerative ability and neurologically relevant system-have been used in ecotoxicology, witnessing renewed scientific interest post-2010.

View Article and Find Full Text PDF

Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.

View Article and Find Full Text PDF

Effects of Imidacloprid on Afrotropical Aquatic Ecosystems: A South African Microcosm Study.

Integr Environ Assess Manag

September 2025

Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.

Pesticides are widely used to meet the food demands of a growing population, with various types used to control pests depending on the crops grown. Rainfall, overspray, and runoff from agricultural fields can wash these insecticides into water bodies, posing documented environmental risks. Imidacloprid is commonly used in Afrotropical regions such as South Africa, yet limited information is available on its toxicity to aquatic ecosystems within this climate region.

View Article and Find Full Text PDF

This study focuses on the differences in bioaccumulation and metabolic patterns of seven fungicides between and its host plant, peanut. The BCF value of the fungicides in ranging from 0.62 to 2.

View Article and Find Full Text PDF

Insights into the toxicity effects of indoxacarb against Spodoptera frugiperda using metabolomics combined with mass spectrometry imaging.

Pest Manag Sci

September 2025

National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou, China.

Background: As one of the most destructive and invasive pests for various plants in China, Spodoptera frugiperda (Lepidoptera: Noctuidae) poses an enormous threat to food security and results in serious economic losses for harvesting and consumption of agricultural vegetables. To this end, indoxacarb has shown great promise as an effective insecticide against Spodoptera frugiperda. It is metabolized by insect esterases or amidases into the N-decarbomethoxy metabolite (DCJW), which is a key metabolite responsible for the insecticidal activity of indoxacarb.

View Article and Find Full Text PDF