Fast and specific enrichment and quantification of cancer-related exosomes by DNA-nanoweight-assisted centrifugation.

Anal Chem

Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China.

Published: July 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Exosomes are nanoscale membrane vesicles actively released by cells and play an important role in the diagnosis of cancer-related diseases. However, it is challenging to efficiently enrich exosomes from extracellular fluids. In this work, we used DNA nanostructures as "nanoweights" during centrifugation to facilitate the enrichment of cancerous exosomes in human serum. Two different DNA tetrahedral nanostructures (DTNs), each carrying a specific aptamer for exosome biomarker recognition, were incubated with clinical samples simultaneously. One DTN triggered the cross-linking of multiple target exosomes and, therefore, enabled low-speed and fast centrifugation for enrichment. The other DTN further narrowed down the target exosome subtype and initiated a hybridization chain reaction (HCR) for sensitive signal amplification. The method enabled the detection of 1.8 × 10 MCF-7-derived exosomes per microliter and 5.6 × 10 HepG2-derived exosomes per microliter, with 1000-fold higher sensitivity than conventional ELISA and 10-fold higher sensitivity than some recently reported fluorescence assays. Besides, the dual-aptamer system simultaneously recognized multiple surface proteins, eliminating the interference risk from free proteins. Thus, this easy-to-operate method can enrich exosomes with excellent specificity and sensitivity and therefore will be appealing in biomedical research and clinical diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.2c01872DOI Listing

Publication Analysis

Top Keywords

exosomes
8
enrich exosomes
8
exosomes microliter
8
higher sensitivity
8
fast specific
4
specific enrichment
4
enrichment quantification
4
quantification cancer-related
4
cancer-related exosomes
4
exosomes dna-nanoweight-assisted
4

Similar Publications

Roles of Extracellular Superoxide Dismutase in Regulating Cell Migration and Vesicle Trafficking in Dictyostelium and Mammalian Cells.

Dev Growth Differ

September 2025

Department of Biological Sciences, College of Arts, Sciences, and Education, Florida International University, Miami, Florida, USA.

Superoxide dismutases (SODs) are key regulators of reactive oxygen species (ROS) and redox balance. Although intracellular SODs have been extensively studied, growing attention has been directed toward understanding the roles of extracellular SODs in both Dictyostelium and mammalian systems. In Dictyostelium discoideum, SodC is a glycosylphosphatidylinositol (GPI)-anchored enzyme that modulates extracellular superoxide to regulate Ras, PI3K signaling, and cytoskeletal remodeling during directional cell migration.

View Article and Find Full Text PDF

Global Research Trends in EV-Based Cell-Free Therapy for Osteoarthritis: A Bibliometric Analysis.

Tissue Eng Regen Med

September 2025

Department of Joint and Sports Medicine, Chaoyang Central Hospital, Chaoyang City, Liaoning Province, China.

Background: Osteoarthritis (OA) represents a major global health challenge with no ideal treatment options available. Early-stage treatment typically focuses on symptomatic relief of pain and stiffness; while late-stage patients can only opt for surgical interventions such as joint replacement to improve quality of life. Cell-free therapy based on extracellular vesicles (EVs) has offered a novel therapeutic approach for regulating bone metabolism and repairing cartilage, demonstrating emerging potential.

View Article and Find Full Text PDF

Oligomeric proanthocyanidins (OPCs), condensed tannins found plentiful in grape seeds and berries, have higher bioavailability and therapeutic benefits due to their low degree of polymerization. Recent evidence places OPCs as effective modulators of cancer stem cell (CSC) plasticity and tumor growth. Mechanistically, OPCs orchestrate multi-pathway inhibition by destabilizing Wnt/β-catenin, Notch, PI3K/Akt/mTOR, JAK/STAT3, and Hedgehog pathways, triggering β-catenin degradation, silencing stemness regulators (OCT4, NANOG, SOX2), and stimulating tumor-suppressive microRNAs (miR-200, miR-34a).

View Article and Find Full Text PDF

Introduction: Mutations in SORL1, encoding the sorting receptor Sortilin-related receptor with A-type repeats (SORLA), are found in individuals with Alzheimer's disease (AD). We studied SORLA, carrying a mutation in its ligand binding domain, to learn more about receptor functions relevant for human brain health.

Methods: We investigated consequences of SORLA expression in induced pluripotent stem cell (iPSC)-derived human neurons and microglia, using unbiased proteome screens and functional cell assays.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is a chronic inflammatory bowel disease, the incidence of which continues to rise globally, and existing therapeutic options are limited by low drug bioavailability and systemic side effects. In this study, we systematically investigated the challenges of the special gastrointestinal environment of UC patients for oral drug delivery, such as extreme pH, degradation by digestive enzymes, metabolism of intestinal flora and obstruction of the intestinal mucosal barrier, and summarized the potential of plant-derived Exosome-like Nanovesicles (PELNs) as a novel delivery system. PELNs are produced by plant cells and mainly consist of proteins, RNA, lipids and plant active molecules.

View Article and Find Full Text PDF